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Abstract 

This paper presents a multiple criteria and multiple constraint-level linear programming (MC^2 

LP) model for order quantity allocation under price breaks in a multi-decision-maker 

environment. Order allocation is inherently a multi-objective problem influenced by several 

conflicting criteria. In practice, suppliers often offer price discounts, and multiple decision 

makers (DMs) are involved in the decision process. To capture the uncertainty in DMs' opinions, 

the model incorporates multiple constraint levels on demand. The proposed approach considers 

three objective functions: minimizing purchasing cost, the number of late deliveries, and the 

number of rejects. An interactive fuzzy goal programming procedure, extended with a modified 

two-phase method, is developed to obtain Pareto-optimal solutions. A numerical example is 

provided to illustrate the application of the proposed model, and a comparative analysis with 

existing methods is conducted. The results demonstrate that the MC^2 LP model is effective for 

order allocation under price discount schemes in multi-DM settings, and that the proposed 

method successfully identifies Pareto-optimal solutions. 
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INTRODUCTION1  

Outsourcing has become increasingly prevalent as firms strive to focus on value-added 

activities and core competencies to enhance their competitive advantage and improve customer 

satisfaction in today’s dynamic and competitive market. A key concern in outsourcing decisions 

is the allocation of business across suppliers. Buyers aim to maintain flexibility and avoid over-

dependence on any single source, while suppliers, particularly small ones, worry that sudden 

disruptions in purchasing may threaten their financial viability. Therefore, making effective 

outsourcing decisions requires buyers to exercise considerable judgment in allocating order 

quantities among available suppliers to satisfy strategic objectives. 

Order allocation constitutes a multi-criteria decision-making (MCDM) problem. Suppliers 

are often evaluated based on a combination of technical, engineering, and logistical capabilities. 

Traditional evaluation criteria—such as quality, delivery, and price—remain among the most 

frequently cited factors in supplier assessment (Arikan, 2013). Additionally, real-world order 

allocation problems frequently involve price discounts, offering buyers opportunities to meet cost 

objectives. Accordingly, developing effective strategies to manage such pricing dynamics is 

essential for procurement professionals. 

Many researchers approach order quantity allocation using single-objective techniques, 

such as linear programming (LP) or mixed-integer programming (MIP), where cost is typically 

the primary objective and other criteria are modeled as constraints. However, such 

formulations—featuring a single objective and a single constraint level—often fall short in 

capturing the complexity of real-world scenarios. In practice, order allocation decisions 

frequently involve input from multiple departments or stakeholders within a firm (Dyer and 

Forman, 1992). Cross-functional sourcing teams, for instance, bring together individuals with 

diverse expertise to address procurement challenges. These teams tend to outperform 

individuals by leveraging broader skills, knowledge, and perspectives (Johnson et al., 2011). 

However, the diversity of opinions, particularly regarding parameters like total demand, 

introduces uncertainty into the decision-making process. Consequently, order allocation is better 

framed as a group decision-making problem involving multiple criteria and multiple constraint 

levels. 

                                                 
1
 DM – decision maker 

       - fuzzy multiple criteria and multiple constraint level linear programming 

LP – Linear programming 

MCLP - multiple criteria linear programming 

      - multiple criteria and multiple constraint-level linear programming 

MIP – Mixed integer programming 
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Traditional LP and multi-criteria linear programming (MCLP) models generally assume a 

single decision-maker and a single level of resource availability. In contrast, multiple criteria and 

multiple constraint-level linear programming (     ) extends the MCLP framework by 

accommodating both conflicting criteria and varying levels of resource constraints. These 

multiple constraint levels—reflecting the discrete opinions of different decision-makers—are 

critical when the decision process involves a group. Thus, the group MCLP problem should 

consider multiple resource levels to reflect the practical realities of decision-making in 

organizations. The       model provides a more realistic framework than single-level models 

(Liu and Shi, 1994). One example is production system design, where financial, production, and 

marketing managers may define different constraint levels (Shi and Liu, 1997). Accordingly, 

      is more appropriate than MCLP for solving order allocation problems involving multiple 

decision-makers with distinct views on resource availability. The model accommodates multiple 

evaluation criteria—such as price, delivery performance, and product quality—while 

incorporating diverse constraints defined by stakeholders including finance, quality, and 

procurement managers. 

Although mathematical programming techniques are commonly used to tackle multi-

objective problems, solving       models is challenging due to the involvement of multiple 

decision-makers with differing preferences. While the MC²-simplex method can address such 

problems, it often requires significant computational effort due to the need to explore a large 

number of pivot operations. This complexity reduces the method’s practicality for large-scale 

problems. Furthermore, it is often difficult to identify which of the potential solutions lie on the 

surface or vertex of the polyhedron, complicating the final decision-making process. Decision-

makers may hesitate to select a specific solution from among many candidates, especially when 

trade-offs are not clearly defined. 

To better handle such uncertainties, fuzzy MCLP techniques have been employed to 

solve       problems (Liu and Shi, 1994). However, many existing fuzzy MCLP solution 

methods generate fuzzy-efficient rather than Pareto-optimal solutions, which may limit their 

practical utility (Jimenez and Bilbao, 2009). Notably, Pareto-optimal solutions form a subset of 

weakly Pareto-optimal solutions, and selecting a final compromise solution often requires the 

integration of subjective judgment with quantitative analysis. Besides fuzzy approaches, goal 

programming (GP) and interactive methods are commonly used to guide the decision-making 

process toward a compromise solution. 

In light of these considerations, this study proposes an integrated procedure that 

combines fuzzy set theory, interactive decision-making, and goal programming to identify 

Pareto-optimal solutions for the       order allocation problem. The model accounts for 
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quantity discounts and incorporates multiple constraint levels to reflect the perspectives of 

various decision-makers. Furthermore, a modified two-phase method is developed within the 

proposed framework to enhance solution quality and efficiency. 

The remainder of this paper is structured as follows. Section 2 reviews the literature on 

      and order allocation methodologies. Section 3 introduces the       model and outlines 

the proposed solution methodology. Section 4 provides a numerical example and presents a 

comparative analysis of solutions. Finally, Section 5 concludes the study and offers 

recommendations for future research. 

 

LITERATURE REVIEW  

The literature review will focus on the methods to solve the order allocation and the 

      problems.  

 

Solution methods for the order allocation problem 

The order allocation problem has been widely studied through the lenses of 

mathematical programming, multi-criteria decision-making, fuzzy logic, group decision-making 

(GDM), and quantity discount strategies. This section reviews the evolution of solution methods, 

beginning with mathematical and hybrid programming approaches and extending to models that 

incorporate fuzziness, multiple objectives, discount considerations, and group-based decision-

making. 

Numerous researchers have employed mathematical programming models to optimize 

order allocation based on cost and supplier performance metrics. For instance, Ghodsypour and 

O’Brien (2001) proposed a mixed-integer nonlinear programming (MINLP) model to minimize 

total logistics cost under budget, quality, and service constraints. Talluri and Narasimhan (2003) 

introduced a max-min approach to evaluate supplier efficiency scores and allocate order 

quantities accordingly. Faez et al. (2009) formulated a mixed-integer programming (MIP) model 

to concurrently select suppliers and determine order quantities under demand and capacity 

limitations. Bohner and Minner (2017) addressed supplier failure risks and quantity discounts 

using a mixed-integer linear programming (MILP) model. These models primarily focus on 

single-objective optimization, where one criterion is treated as the objective and others as 

constraints. 

To overcome the limitations of single-objective frameworks, several studies have 

adopted multi-objective and goal programming techniques. Ghodsypour and O’Brien (2001), for 

example, proposed a hybrid model integrating the Analytic Hierarchy Process (AHP) with 

MINLP for order allocation. Similarly, Kumar et al. (2007) developed a hybrid AHP-goal 
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programming model for vendor selection. Choudhary and Shankar (2014) presented a goal 

programming model addressing inventory lot-sizing, supplier selection, and carrier 

determination simultaneously. However, these approaches typically lack mechanisms to 

account for uncertainty and participatory decision-making. 

To address this, a subset of the literature incorporates fuzziness and multiple objectives 

to better reflect real-world procurement scenarios. Jadidi et al. (2008) combined TOPSIS with 

fuzzy multi-objective MILP to determine order quantities with price breaks. Wu et al. (2010) 

introduced a fuzzy multi-objective linear programming (FMOLP) model using a possibility-based 

solution approach. Amid et al. (2011) integrated AHP-derived weights into a fuzzy multi-

objective model for supplier evaluation, while Kumar et al. (2017) treated demand as a fuzzy 

variable in a fuzzy AHP-weighted FMOLP model. Although these models recognize uncertainty 

and conflicting objectives, they often neglect scenarios involving multiple constraint levels, as 

found in group decision-making contexts. 

More recent research has incorporated sustainability and Pareto optimization. 

Cheraghalipour and Farsad (2018) developed a bi-objective MILP model minimizing total cost 

while maximizing supplier sustainability scores, using a Revised Multi-Choice Goal 

Programming (RMCGP) solution method. Mohammed et al. (2019) integrated fuzzy AHP and 

fuzzy TOPSIS to evaluate suppliers across traditional, environmental, and social criteria. They 

solved the resulting fuzzy multi-objective optimization model using ε-constraint and LP-metrics 

methods to generate Pareto-optimal solutions, followed by TOPSIS-based selection. Moheb-

Alizadeh and Handfield (2019) proposed a comprehensive multi-objective MILP model 

considering multiple periods, products, and transportation modes, filtering Pareto solutions via 

DEA-based super efficiency scores. Mirzaee et al. (2022) incorporated environmental 

regulations, such as cap-and-trade mechanisms, into a robust optimization model for green 

supplier selection and order allocation in closed-loop supply chains. 

Quantity discount strategies have also attracted scholarly attention. Wadhwa and 

Ravindran (2007) developed a multi-objective model that incorporates price, lead time, and 

quality with discount structures. Wang and Yang (2009) employed AHP and fuzzy compromise 

programming to address quantity discounts. Amid et al. (2009) introduced a fuzzy multi-

objective model considering price breaks. Cebi and Otay (2016) applied the fuzzy 

MULTIMOORA method for supplier evaluation and utilized a max–min fuzzy goal programming 

model encompassing discounts, lead time, capacity, and demand. Gupta et al. (2016) proposed 

a possibilistic programming approach integrating fuzzy multi-objective integer programming and 

AHP for sustainable vendor selection under price breaks and fuzzy constraints. 
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Despite these advances, limited research has addressed group decision-making in the 

context of order allocation. Chou and Chang (2008) employed a fuzzy multi-attribute rating 

method incorporating group decision-making for supplier selection. Razmi et al. (2009) 

combined fuzzy TOPSIS with fuzzy MIP to allocate orders based on group input. Zouggari and 

Benyoucef (2012) utilized a simulation-based fuzzy TOPSIS approach for supplier selection and 

order allocation within a group decision-making setting. Although these studies incorporate 

fuzzy group decision-making, they fall short of modeling scenarios where multiple decision-

makers specify divergent constraint levels. 

In practice, procurement decisions are frequently made by committees of decision-

makers (DMs), each with distinct preferences, evaluations, and risk perceptions. While decision 

aids and heuristics are commonly used to navigate uncertainty, they often fail to address the 

ambiguity and subjectivity inherent in group decision-making. Divergent opinions among DMs 

can be modeled as heterogeneous constraint levels; however, current mathematical 

formulations rarely incorporate this complexity. No reviewed model to date has integrated 

multiple constraint levels derived from different DMs within a unified order allocation framework. 

This gap highlights a critical research opportunity: the development of advanced models that 

integrate fuzziness, multi-objective optimization, and group decision-making with heterogeneous 

constraints reflective of real-world organizational settings. 

 

MC2LP solution methods 

There is a paucity of literature applying multiple-criteria and multiple-constraint-level 

linear programming (MC²LP) to practical decision-making problems. A few notable exceptions 

include He et al. (2010) and Shanmugapriya (2012), who employed MC²LP in data mining, 

particularly for classification problems in credit card scoring. Zhong et al. (2013) extended the 

application of MC²LP to oil field development. In addition, Chen et al. (2013) provided a 

comprehensive review of the MC²LP framework. However, to the best of the author’s 

knowledge, no existing studies have applied the MC²LP approach to the order allocation 

problem—especially one that simultaneously accounts for divergent decision-maker (DM) 

opinions and quantity-based price discounts within a unified modeling framework. 

Seiford and Yu (1979) initially proposed the MC²-simplex method to solve MC²LP 

problems, extending the traditional simplex algorithm of linear programming to handle multiple 

criteria and multiple constraint levels. However, this method suffers from significant 

computational complexity, as it requires considerable time to identify all potential efficient 

solutions, which substantially limits its practical use in large-scale problems. Furthermore, it 
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poses difficulties for DMs, who may struggle to select a single preferred solution from a set of 

potentially large alternatives. 

To address these limitations, Shi and Liu (1993) and Liu and Shi (1994) developed a 

procedure that integrates the MC²-simplex method with fuzzy linear programming (FLP), thereby 

enabling the generation of fuzzy-efficient solutions. While these fuzzy approaches offer greater 

flexibility in representing uncertainty and imprecision in DM preferences, they have a critical 

drawback: once a goal has been fully satisfied (i.e., the membership grade reaches 1), the 

corresponding solution may no longer be Pareto-optimal (Pal et al., 2003). 

To bridge these gaps in the existing literature, this study develops a novel MC²LP model 

tailored for the order allocation problem under multiple conflicting objectives. The model 

simultaneously considers minimizing purchasing costs, the number of defective items, and the 

number of late deliveries, all subject to real-world constraints such as buyer demand, supplier 

capacity, and quantity-based price discounts. Moreover, recognizing the diversity of opinions 

among multiple DMs and the inherent conflict among objectives, this study proposes an 

interactive fuzzy decision-making procedure. The proposed approach combines a modified two-

phase method with fuzzy logic to guide the search for a Pareto-optimal solution that balances 

conflicting goals while incorporating heterogeneous constraint levels specified by different DMs. 

 

MODEL DEVELOPMENT  

A general multiple-criteria linear programming (MCLP) problem can be formulated as 

Max    

s.t.     ,        (1) 

where      represents the decision variables,        is the matrix of objective function 

coefficients,        is the constraint matrix, and      represents a single resource 

availability vector. 

To incorporate multiple constraint levels from different decision-makers (DMs), an     

matrix             is introduced, where each column    represents a constraint vector 

corresponding to the opinion or estimation of DM DM . The convex hull generated by the 

columns of  , denoted by     , is defined as: 

                
 
        ,      

 
     

An MCLP becomes a multiple-criteria, multiple-constraint level linear programming 

(MC²LP) problem when the constraint is relaxed to      for some       . It is important to 

note that the MCLP is a special case of the       when   consists of a single column, i.e., 

   . 
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In the       formulation, a solution   is considered feasible if the constraint      is 

satisfied for a       , meaning that    lies within the convex combination of the constraint 

vectors   . For a given weight vector                 , with       
 
    Liu and Shi 

(1994) demonstrated that a solution    is a potential solution to the       if and only if it is an 

efficient solution to the following parametric linear program: 

Max    

s.t.      ,      (2) 

where    denotes the linear combination of constraint vectors determined by the weights  , 

reflecting the aggregated preference or opinion among multiple DMs. 

 

Components of the       Order Allocation Model 

In the context of order allocation under price discounts and group decision-making, the 

      model includes the following components: 

Decision Variables 

    : Quantity allocated to supplier   at price level   

   : Binary selection variable;      if supplier   is selected, and 0 otherwise 

Parameters 

  : Total number of available suppliers 

    : Unit price offered by supplier   at price level   

   : Number of price levels offered by supplier   

   : Demand estimation provided by decision-maker   

    : Maximum allowable quantity that can be allocated to supplier   at price level   

   : Percentage of late deliveries from supplier   

   : Percentage of defective items received from supplier   

   : Maximum capacity available from supplier   

This model structure facilitates the simultaneous consideration of multiple objectives—

such as cost minimization, quality improvement, and on-time delivery performance—under the 

complex constraint environment shaped by multiple decision-makers' judgments and quantity-

based price discount structures. It provides a more realistic and adaptable framework for solving 

multi-criteria order allocation problems in uncertain and multi-actor settings. 

 

MC²LP Order Allocation Model Formulation 

Based on the purchasing policy assumptions regarding price, delivery reliability, and 

product quality, the order allocation problem can be formulated as a multiple-criteria, multiple-
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constraint level linear programming (     ) model. This formulation accommodates the 

existence of multiple constraint levels in demand estimation, reflecting the views of different 

decision-makers (DMs). Assuming at least two DMs are involved in the process, the       

model for the order allocation problem is defined as follows: 

Objective Functions 

Minimize: 

           
  
   

 
     (f 1) 

          
  
   

 
    (f 2) 

          
  
   

 
     (f 3) 

s.t.   

             
  
      (f 4) 

                 
  
   

 
    (f 5) 

                            (f 6) 

            
  
      (f 7) 

                (f 8) 

     
         

         
           (f 9) 

     
 
   ,               (f10) 

 

Model Description 

 Objective Functions (f1–f3): The model includes three conflicting objectives: 

o (f1) Minimizing total purchasing cost. 

o (f2) Minimizing the number of late deliveries. 

o (f3) Minimizing the number of defective items (rejects). 

 Constraint (f4): Ensures that the total quantity allocated to each supplier does not 

exceed their available capacity. 

 Constraint (f5): Represents the incorporation of multiple constraint levels, allowing each 

DM to express a different opinion on the total demand. The aggregated demand is 

modeled as a convex combination of the individual DMs’ estimates. 

 Constraint (f6): Enforces the valid range of order quantities corresponding to the 

selected price break for each supplier. The quantity     must lie between the lower and 

upper bounds defined by the price break thresholds        and     , respectively, if 

supplier   is chosen at price level  . 
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 Constraint (f7): Limits each supplier to be selected at no more than one price break 

level. 

 Constraint (f8): Prevents negative order allocations. 

 Constraint (f9): Specifies the binary nature of the supplier–price-level selection decision 

variable    . 

 Constraint (f10): Ensures that the DMs’ preference weights    form a valid convex 

combination. 

This model is formulated as a mixed-integer linear programming (MILP) problem due to 

the inclusion of binary variables    , enabling clearer and more interpretable solutions for the 

decision-makers. The use of the MC²LP framework allows for systematic incorporation of 

multiple, and potentially conflicting, demand opinions from different DMs, while simultaneously 

addressing cost, delivery, and quality considerations in supplier selection and order allocation. 

 

Fuzzy Solution Approach 

In fuzzy programming, both the objective function and multiple constraints are treated as 

fuzzy sets. Let G and C denote the fuzzy sets representing the objectives and the constraints, 

respectively. A “decision” in a fuzzy program is defined as one that simultaneously satisfies the 

objective functions and constraints to an acceptable degree. According to Bellman and Zadeh 

(1970), the fuzzy decision set D is defined as the intersection of G and C, with the 

corresponding membership function given by: 

                       

The upper bound    and lower bound    of the decision maker’s (DM's) acceptability for 

each objective   represent, respectively, the worst (maximum) and best (minimum) possible 

values of the  -th objective. These bounds can be determined by solving the corresponding 

single-objective optimization problems (Lai and Hwang, 1994). 

Let: 

                 

Then, the linear membership function associated with minimizing the objective    is 

defined as: 

   
    

 
 

 
          

     

     
            

          

     

For multiple objectives, the overall fuzzy objective set is: 
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According to the min-operator principle (Bellman and Zadeh, 1970), the fuzzy decision is 

thus defined as: 

            
 

                          
       

    

Following the concept of membership functions and the fuzzy decision operator 

(Zimmermann, 1978), the Multi-Criteria Linear Programming (MCLP) problem (1) can be 

reformulated as: 

Maximize   

s.t.  

       
       

                  

            (3)  

Here, the auxiliary variable   represents the overall satisfaction level or degree of compromise. 

Based on this formulation, the optimal solution of the following fuzzy multiple criteria and 

multiple constraint-level linear program (      ) is considered a feasible solution for the 

original       problem (Liu and Shi, 1994): 

Maximize    

s.t.  

     
          

        

 

   

 

     

 

   

 

       ,     ,        for given   (4)  

This fuzzy approach systematically reduces the complexity of the multi-objective model 

by converting the       problem into a standard linear program. If the        has a unique 

optimal solution, then this solution is fuzzy-efficient (see Definition 1). Otherwise, while not all 

optimal solutions may be fuzzy-efficient, at least one of them will be (Werners, 1987). 

Definition 1 (Werners, 1987). 

A solution      is fuzzy-efficient with respect to the        if and only if there is no other 

solution     such that    
       

     for all   and             
   for at least one index  . 

Definition 2 (Werners, 1987). 

A solution      is Pareto-optimal to the       if and only if there is no other     such that 

          
   for all  , and           

   for at least one  . 
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A proposed approach  

Numerous algorithms have been developed to generate fuzzy-efficient solutions to 

transformed models in multi-criteria linear programming contexts. Notable examples include the 

works of Lee and Li (1993), Sakawa (1993), Guu and Wu (1999), and Arikan and Gungor 

(2007). These approaches often employ fuzzy membership functions to transform multi-

objective problems into single-objective formulations. However, as discussed by Li and Lai 

(2000), a fuzzy-efficient solution derived from such transformations (e.g., model (4)) may not be 

Pareto-optimal in the context of a Multi-Criteria Linear Programming (MCLP) problem (see 

Definition 2). 

Building on the method proposed by Guu and Wu (1999), Jiménez and Bilbao (2009) 

introduced a Fuzzy Multi-Objective Linear Programming (FMOLP) model to obtain a solution 

that is both fuzzy-efficient and Pareto-optimal. Nonetheless, in their model, the value of 

each fuzzy goal is determined subjectively by the decision maker (DM), rather than being 

based on the feasible region of the objective functions. This subjectivity introduces the risk 

of infeasibility if the DM-specified aspiration levels fall outside the attainable domain of the 

problem. 

To mitigate this issue, the present study assumes that DMs are unable to express 

precise aspiration levels for the objectives. Consequently, an interactive two-phase approach is 

proposed to identify Pareto-optimal solutions without requiring the DM to specify exact desired 

values. This approach modifies conventional fuzzy goal programming techniques and integrates 

them into a robust MCLP framework with multiple constraint levels. 

We propose solving the following optimization problem: 

Max    
 
    

s.t. 

             
              

        

 

   

 

     

 

   

 

      ,     

   ,    ,         (5) 

Here,     
   represents the value of the k-th objective function in the solution    obtained from 

model (4), which corresponds to the fuzzy-efficient solution. The variables    measure the 

degree of overachievement (or improvement) in the k-th goal, similar to negative deviation 
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variables in conventional Goal Programming (GP). The coefficients    are weights assigned to 

each constraint level   , satisfying the convex combination condition and a lower-bound   to 

avoid degenerate allocations. 

This two-phase method ensures that the final solution is Pareto-optimal by first 

identifying a fuzzy-efficient point, and then maximizing the aggregate overachievement of goals 

based on feasible bounds, without imposing infeasible aspirations. Moreover, it accommodates 

the uncertain and imprecise nature of group decision-making by avoiding reliance on exact 

numerical inputs from the DMs. 

 

Lemma 1. 

If    is an optimal solution for problem (5), then    is a Pareto-optimal solution for problem (2). 

Proof. 

Assume, for the sake of contradiction, that the optimal solution    of problem (5) is not a Pareto-

optimal solution of problem (2). Then, there exists another feasible solution   to problem (2) 

such that: 

          
  ,            , 

and 

          
  , for at least one          . 

Given that the membership functions    
    are strictly monotonically decreasing with respect 

to      , we have: 

   
        

   ,    , 

which implies that   is also feasible for problem (5). 

From the definition of    in problem (5), we have: 

    
       

       
      

Then, the objective value of problem (5) at    is: 

     
   

          
       

    
   . 

Since           
   and           

   for all other  , it follows that: 

      
       

    
         

       
       

              
                    

      
                

 
   

 
   .  

In other words, the following inequality holds:    
 
           

 
      . This contradicts the 

assumption that    is an optimal solution of problem (5). Hence, the contradiction implies that 

   must be a Pareto-optimal solution to problem (2). □ 
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Interactive Improvement Process 

In practice, determining precise aspiration levels for multiple conflicting goals is often 

difficult for decision makers (DMs). As a result, the solutions obtained from the fuzzy goal 

programming models may not always be optimal in the Pareto sense unless a saturation point—

where the membership value equals 1—is achieved for all objectives. Except in such ideal 

cases, a fuzzy-efficient solution to the        (Fuzzy Multi-Criteria and Multi-Constraint Linear 

Programming) problem may still fall short of Pareto optimality in the       problem. 

To address this, an interactive improvement procedure is recommended. This approach 

allows the DM to progressively adjust preferences throughout the solution process, improving 

dissatisfying objectives without requiring precise aspiration levels. Each objective function is 

represented as a fuzzy number characterized by a linear membership function that reflects the 

DM’s preferences. These membership functions are updated dynamically in response to 

evolving tolerances for each objective. 

The interactive procedure involves the following steps: 

1. Initial Solution: Solve model (4) using current membership functions to obtain a fuzzy-

efficient solution   . 

2. Construct Model (5): Use    as input to model (5) and solve for the Pareto-optimal 

solution   . 

3. Check Satisfaction: Compare     
   with the upper tolerance limit    for each objective: 

o If     
   <   , update    with this new tighter bound and revise the membership 

function accordingly. 

o Otherwise, retain the current membership function. 

4. Iterate: With updated membership functions, resolve models (4) and (5). 

5. Repeat until: 

o The DM is satisfied with the solution, or 

o No significant improvement can be made to the objective values. 

This iterative process narrows the feasible region by eliminating dissatisfying solutions 

and focusing on regions of higher satisfaction. It converges when no further meaningful 

improvements can be made—guaranteeing termination of the algorithm. However, it is 

important to note that improvements in one membership function may come at the expense of 

deterioration in another, due to trade-offs inherent in multi-objective optimization (Sakawa et al., 

1987). 

The described procedure is practical and can be implemented using widely available 

mathematical programming software such as LINGO, GAMS, or MATLAB. 
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Solution Procedure 

The following steps summarize the proposed interactive fuzzy goal programming 

solution procedure for the       (Multi-Criteria and Multi-Constraint Level Linear Programming) 

problem. This approach integrates fuzzy set theory and multi-phase optimization to iteratively 

achieve a Pareto-optimal solution while incorporating the decision maker’s (DM’s) preferences: 

Step 1: Formulate the       problem as presented in model (2), defining all objective functions 

and constraints. 

Step 2: For each objective function      , determine its individual maximum and minimum 

values by optimizing it separately under the problem’s constraints. These bounds are necessary 

to construct the membership functions. 

Step 3: Using the upper and lower bounds obtained in Step 2, construct linear membership 

functions       for each objective function to represent the DM’s preferences. 

Step 4: Solve the max–min fuzzy model (4) (Phase I) to identify a fuzzy-efficient solution. 

 If the solution is unique, proceed to Step 8. 

 If multiple fuzzy-efficient solutions exist, continue to Phase II (Step 5). 

Step 5: Add the optimal value from Phase I as a constraint and solve model (5) to improve upon 

the previous solution and generate a Pareto-optimal solution. 

Step 6: Present the solution to the decision maker (DM). If the DM is satisfied with the result, 

proceed to Step 8. Otherwise, continue to Step 7. 

Step 7: For each objective function     
  : 

 If     
     , update    as the new upper bound, reconstruct the corresponding 

membership function, and return to Step 3. 

 Otherwise, retain the current membership function and return to Step 3. 

Step 8: Stop. The final solution is either a unique fuzzy-efficient solution or a Pareto-optimal 

solution obtained through iterative refinement in collaboration with the DM. 

This iterative and interactive procedure ensures progressive improvement of the solution 

through preference adjustment and model re-solving. It balances conflicting objectives while 

reducing the feasible region based on updated tolerances, ultimately yielding a DM-satisfactory 

and Pareto-optimal solution. 

 

# Step 1: Define the MC²LP model 

define_model() 

 

# Step 2: Compute individual min and max for each objective G_k 

bounds = {} 
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for k in objectives: 

    bounds[k] = { 

        "min": optimize(G_k, sense="minimize"), 

        "max": optimize(G_k, sense="maximize") 

    } 

 

# Step 3: Construct linear membership functions μ_Gk(x) 

mu_functions = construct_membership_functions(bounds) 

 

# Phase I: Solve max-min model (4) 

solution_phase1 = solve_max_min_model(mu_functions) 

 

if solution_phase1.is_unique: 

    final_solution = solution_phase1 

    stop() 

else: 

    while True: 

        # Phase II: Solve model (5) 

        solution_phase2 = solve_model_5(solution_phase1) 

 

        # Step 6: Interaction with the decision maker 

        if DM_is_satisfied(solution_phase2): 

            final_solution = solution_phase2 

            break 

        else: 

            # Step 7: Update membership functions 

            for k in objectives: 

                if solution_phase2.objective_values[k] < bounds[k]["max"]: 

                    bounds[k]["max"] = update_upper_bound(k) 

            mu_functions = construct_membership_functions(bounds) 

            solution_phase1 = solve_max_min_model(mu_functions) 

 

# Output the final solution 

return final_solution 
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NUMERICAL EXAMPLE AND PERFORMANCE ANALYSIS  

Model formulation and basic data for the example problem 

This section demonstrates the application of the proposed Multi-Criteria and Multi-

Constraint Level Linear Programming (MC²LP) model to an order allocation problem. The aim is 

to illustrate the procedure for solving the problem using the developed methodology. 

Table 1 presents the relevant data for three potential suppliers, including their respective 

price levels (  ), delivery performance (  ), quality capability (  ), and capacity limitations. For 

illustrative purposes, it is assumed that there are three candidate suppliers for a single product. 

The decision-makers (DMs) have specified two estimated levels of demand: 800 units and 1200 

units. 

The proposed procedure is implemented using the LINGO v.14 optimization software. 

The solution process involves the following steps: 

Step 1: Formulate the       model for the example problem (see Appendix for full model 

formulation). 

Step 2: Solve model (2) to obtain the minimum and maximum values for each objective function. 

The results are summarized in Table 2. 

Step 3: Construct linear membership functions for each objective function based on the 

computed minimum and maximum values from Step 2. 

Step 4: In Phase I, the focus is on transforming model (2) into model (4), which incorporates the 

developed membership functions to address the multi-objective nature of the problem. 

 

Max   

Subject to:  

  
                                                              

          
 

  
                                                       

      
 

  
                                                       

      
 

       

       

    

and (A.1) – (A.19). 

 The optimal solution obtained is    
     ,    

     , and    
     . The optimal value 

is       ,       ,         ,     
       ,     

        ,     
        , and     
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     ,     
         ,     

         . According to Definition 1, this solution is fuzzy 

efficient, although its Pareto-optimality remains uncertain. Therefore, we proceed to Phase II. 

Phase II: Interactive Improvement via Deviation Variables 

We now solve the following model to improve the fuzzy efficient solution: 

Max          

s.t.  

                                                               

                                                              

                                                             

      ,       ,   ,   ,      

and (A.1) – (A.19) 

The improved solution is:    
    ,    

     ,     
       ,     

        , and     
   

     . This solution demonstrates improvement over the previous step, as:     
       

  , 

    
       

  , and     
       

  . 

Step 6. If the decision-maker is not satisfied with the current outcome, the membership function 

for the unsatisfactory objective (in this case,   ) is updated using the current value as the new 

upper bound.   

Step 7. The new upper bound for    becomes 6536, while membership functions for    and    

remain unchanged. Re-solving the updated model yields the same optimal solution:    
    , 

   
      and     

       ,     
        , and     

        . No further improvement is 

observed, and since the solution is now both fuzzy efficient and Pareto-optimal, the algorithm 

terminates. Table 3 summarizes the iterative results. 

 

Sensitivity to Decision Maker Preferences 

Table 4 summarizes the optimal solutions under various preference scenarios. In Case 

1, 83% of the total order is allocated to Supplier 3 due to superior price performance. The 

preference weights       ,      indicate that the first decision maker's preferences 

dominate. 

As    increases (Cases 2–4), the importance of satisfying the second DM grows. 

Consequently, total demand increases, and Supplier 3 continues to receive the majority of the 

order due to consistently favorable performance. However, allocations to Supplier 2 decline. 

This analysis demonstrates the model's flexibility in adjusting to varying DM preferences. 

Trade-offs among suppliers can be visualized graphically (Figure 1), aiding the DM in 

understanding solution behavior. 
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Comparative Performance with Alternative Methods 

Table 5 presents results from several comparative cases: 

 Cases 2–4: 10% increases in    ,   , and   , respectively 

 Cases 5–7: 10% joint increases in combinations of the above parameters 

The following insights are derived: 

 The membership function structure reflects the DMs’ imprecise preferences by using 

objective lower and upper bounds. 

 The max–min and fuzzy programming approaches effectively quantify satisfaction levels, 

facilitating informed decision-making. 

 While the max–min solutions yield acceptable satisfaction levels, they may not guarantee 

Pareto optimality. 

 The proposed method, via a two-phase fuzzy interactive procedure, consistently yields 

lower    values than Liu and Shi’s (1994) method, while maintaining identical values for 

   and   . 

 Iterative updates to unsatisfactory membership functions, via reduced tolerance intervals, 

progressively refine the solution space, enabling convergence to Pareto-optimal 

outcomes. 

In summary, the proposed method proves superior in generating efficient, preference-

sensitive, and Pareto-optimal solutions under fuzzy multi-objective constraints. 

 

Performance analysis  

This section evaluates the performance of the solution results obtained using the 

proposed method in comparison with Liu and Shi’s (1994) fuzzy programming approach, as 

reported in Table 5. The weak potential solution derived from the max-min method is excluded 

from this comparison due to its inferior performance across the evaluated objectives. 

To identify the most effective method, each compromise solution for the objectives was 

compared against its corresponding ideal value. The closeness of each compromise solution to 

its ideal counterpart was measured using a family of distance functions proposed by El-Wahed 

and Lee (2006). This measure quantifies the aggregate distance between the compromise and 

ideal solutions across all objectives, as follows: 

            
 
      

    

 

   

 

where    denotes the degree of closeness between the compromise and ideal values for the 

kkkth objective,    is the normalized relative importance (or weight) of the kth objective 
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(      
   ), and   is a parameter representing the type of distance function, with      . 

For specific values of  , the distance functions simplify to: 

                 
 
    

              
       

  
        

            
 
            

 

In a minimization context,    is computed as the ratio of the optimal solution of    to the 

preferred (ideal) value of   . The preferred method is the one that yields the shortest distance to 

the ideal point under the respective distance metric. 

Table 6 presents the comparison results for Liu and Shi’s (1994) fuzzy programming 

method and the proposed approach under different weighting schemes for the objective 

functions. The results show that the proposed method consistently yields lower values of    and 

  , indicating a closer proximity to the ideal solution across a variety of preference weight 

settings. While the    values are equal for both methods regardless of the weights, the 

superiority of the proposed approach in terms of overall closeness is evident under the more 

commonly used    and    measures. 

These findings confirm that the proposed interactive two-phase programming method 

provides a more desirable compromise solution than Liu and Shi’s (1994) fuzzy programming 

approach. 

From a managerial perspective, the proposed Multi-Criteria and Multi-Constraint Level 

Linear Programming (MC²LP) model offers practical advantages for solving order allocation 

problems. In real-world applications, multiple decision-makers (DMs) and quantity discount 

schemes frequently complicate procurement decisions. The proposed formulation 

accommodates multiple conflicting objectives, integrates the preferences of multiple DMs, and 

accounts for price discounts simultaneously. 

Furthermore, the approach maintains flexibility by allowing adjustments in the number of 

objectives and constraints to suit dynamic organizational policies and market conditions. As 

demonstrated in the numerical example, sensitivity analysis based on the DMs’ opinion weights 

is feasible within the proposed framework. This adaptability empowers firms to tailor 

procurement decisions to diverse and evolving strategic needs. 

Importantly, the proposed method guarantees that the solution is not only fuzzy efficient 

but also Pareto-optimal, providing strong support for its implementation as a robust decision-

making tool in multi-objective procurement environments. 
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CONCLUSION   

Most purchasing decisions involve multiple decision-makers (DMs), culminating in a 

group decision formed by aggregating individual judgments. Unlike previous studies that 

address the multi-choice linear programming (MCLP) order allocation problem under a single 

constraint level, this study proposes a Multi-Choice Multi-Constraint Linear Programming 

(MC²LP) model. The proposed model offers a more comprehensive framework for optimal order 

allocation by incorporating organizational objectives, multiple constraint levels derived from 

DMs' opinions, and price discount considerations. As such, it more accurately reflects real-world 

applications. 

A key contribution of this study lies in the solution approach developed for the MC²LP 

problem. Specifically, a novel procedure integrating fuzzy sets, interactive techniques, and a 

two-phase method is designed to identify Pareto-optimal solutions. By iteratively comparing 

solution values and the tolerance limits of membership functions, the membership function is 

dynamically updated to efficiently obtain a satisficing solution that balances the preferences of 

multiple DMs. 

Although the proposed method is more complex than traditional max–min and fuzzy 

linear programming approaches, it enables better interaction with DMs and more effectively 

captures group preferences. Additionally, it requires fewer iterations to reach a preferred 

compromise solution. One limitation of the approach is that it may fail to identify an appropriate 

Pareto-optimal solution when the feasible space is non-convex. 

The main contribution of this study is the development of an effective approach for 

solving the MC²LP model, which is applicable to various order allocation problems. Future 

research could explore constraints related to strategic policies, such as minimum order quantity 

percentages assigned to suppliers. Further extensions may include applying the approach to 

multi-product scenarios or using alternative types of membership functions for the objective 

function. Ultimately, the proposed method holds promise for practical application in real-world 

MC²LP problems, including transportation, inventory, and production planning. 

  

REFERENCES 

Amid A, Ghodsypour SH, O'Brien CA (2009) Weighted Additive Fuzzy Multi-Objective Model for the Supplier 
Selection Problem under Price Breaks in a Supply Chain. Int J Prod Econ 121:323–332 

Amid A, Ghodsypou, SH, O'Brien CA (2011) Weighted Max–Min Model for Fuzzy Multi-Objective Supplier Selection 
in A Supply Chain. Int J Prod Econ 131:139–145 

Arikan F, Gungor Z (2007) A Two Phase Approach for Multi-Objective Programming Problems with Fuzzy 
Coefficients. Inform Sciences 177:5191–5202 

Arikan F, (2013) A Fuzzy Solution Approach for Multi-Objective Supplier Selection. Expert Syst Appl 40:947–952  

Bellman RE, Zadeh LA (1970) Decision Making in a Fuzzy Environment. Manage Sci 17:141–164  

http://ijecm.co.uk/


© W. C. Tsai 

Licensed under Creative Common   Page 130 

 

Bohner C, Minner S (2017) Supplier selection under failure risk, quantity and business volume discounts. Comput Ind 
Eng 104:145–155. https://doi.org/10.1016/j.cie.2016.11.028  

Cebi F, Otay Irem (2016) A two-stage fuzzy approach for supplier evaluation and order allocation problem with 
quantity discounts and lead-time. Inform Sciences 339:143-157 

Chen D, Zhong Y, Liao Y, Li L (2013) Review of Multiple Criteria and Multiple Constraint-Level Linear Programming. 
Procedia Comp Sci 17:158–165  

Chou S-Y, Chang Y-H (2008) A Decision Support System for Supplier Selection Based On a Strategy-Aligned Fuzzy 
SMART Approach. Expert Syst Appl 34:2241–2253.  

Cheraghalipour A, Farsad S (2018) A bi-objective sustainable supplier selection and order allocation considering 
quantity discounts under disruption risks: A case study in plastic industry. Comput Ind Eng 118: 237-250 

Choudhary D, Shankar R (2014) A Goal Programming Model for Joint Decision Making Of Inventory Lot-Size, 
Supplier Selection and Carrier Selection. Comput Ind Eng 71:1–9  

Dyer RF, Forman EH (1992) Group Decision Support with the Analytic Hierarchy Process. Decis Support Syst 
8(2):99–124  

El-Waheda, Waiel FAbd, Lee SM (2006) Interactive fuzzy goal programming for multi-objective transportation 
problems. Omega 34:158-166 

Faez F, Ghodsypour SH, O’Brien C (2009)Vendor Selection and Order Allocation Using an Integrated Fuzzy Case-
Based Reasoning and Mathematical Programming Mode. Int J Prod Econ 121:395–408  

Ghodsypour SH, O’Brien C (2001) The Total Cost Of Logistics in Supplier Selection, Under Conditions Of Multiple 
Sourcing, Multiple Criteria And Capacity Constraint. Int J Prod Econ73:15–27  

Guu S-M, Wu Y-K (1999) Two Phase Approach for Solving the Fuzzy Linear Programming Problems. Fuzzy Set Syst 
107:191-195 

Gupta P, Govindan K, Kumar M, Mehlawat et al (2016) A weighted possibilistic programming approach for 
sustainable vendor selection and order allocation in fuzzy environment. Int J Adv Manuf Tech 86(5-8):1785-1804 

He J, Zhang YC, Shi Y, Huang GY (2010) Doman-Driven Classification Based on Multiple Criteria and Multiple 
Constaint-Level Programming for Intelligent Credit Scoring. J IEEE Trans Know Data Eng 22(6):826-838 

Jadidi O, Hong TS, Firouzi F, Yusuff RM, Zulkifli N (2008) TOPSIS and Fuzzy Multi-Objective Model Integration for 
Supplier Selection Problem. J Achieve Mater Manuf Eng 31:762–769  

 imen  ez M, Bilbao A (2009) Pareto-Optimal Solution in Fuzzy Multi-Objective Linear Programming. Fuzzy Set Syst 
160:2714-2721 

Johnson PF, Leenders MR, Flynn AE (2011) Purchasing and Supply Management. 14th Ed. McGraw-Hill, New York 

Kumar M, Vrat P, Ravi S (2007) Vendor Selection in Supply Chains Using the Hybrid Approach of the Analytic 
Hierarchy Process and Goal Programming: A Case Study. J Oper Manag 6:37–58 

Kumar D, Rahman Z, Chan FS (2017) A fuzzy AHP and fuzzy multi-objective linear programming model for order 
allocation in a sustainable supply chain: A case study. Int J Comp Integ M 30(6):535-551  

Lai YJ, Hwang CL (1994) Fuzzy Multiple Objective Decision Making: Methods and Applications. Springer, New York 

Lee ES, Li RJ (1993) Fuzzy Multiple Objective Programming and Compromise Programming with Pareto Optimum. 
Fuzzy Set Syet 53:275-288 

Li LS, Lai KK (2000) A fuzzy approach to the multiobjective transportation problem. Comput Oper Res 27:43-57 

Liu YH, Shi Y (1994) A Fuzzy Programming Approach for Solving a Multiple Criteria and Multiple Constraint Level 
Linear Programming Problem. Fuzzy Set Syst 65:117–124  

Mardani A, Jusoh A, Zavadskas EK, Kazemilari M, Ungku NUA, Khalifah Z (2016) Application of Multiple Criteria 
Decision Making Techniques in Tourism and Hospitality Industry: a Systematic Review. Transform Bus Econ 
15(1):192-213 

Mirzaee, H., Samarghandi, H., & Willoughby, K. (2022). A robust optimization model for green supplier selection and 
order allocation in a closed-loop supply chain considering cap-and-trade mechanism. arXiv preprint 
arXiv:2208.02926. 

Mohammed A, Harris I, Govindan K (2019) A hybrid MCDM-FMOO approach for sustainable supplier selection and 
order allocation. Int J Prod Econ 217(C):171-184  



International Journal of Economics, Commerce and Management, United Kingdom 

 

Licensed under Creative Common   Page 131 

 

Moheb-Alizadeh H, Handfield R (2019) Sustainable supplier selection and order allocation: A novel multi-objective 
programming model with a hybrid solution approach. Comput Ind Eng 129:192-209 10.1016/j.cie.2019.01.011 

Pal BB, Moitra BN, Maulik U (2003) A goal programming procedure for fuzzy multiobjective linear fractional 
programming problem. Fuzzy Set Syst 139:395–405 

Razmi J, Songhori MJ, Khakbaz MH (2009) An Integrated Fuzzy Group Decision Making/Fuzzy Linear Programming 
(FGDMLP) Framework for Supplier Evaluation and Order Allocation. Int J Adv Manuf Tech 43:590–607  

Sakawa M, Yano H, Yumine T (1987) An interactive fuzzy satisficing method for multiobjective linear programming 
problems and its application. IEEE Trans Syst Man Cyber 4:654-661 

Sakawa M (1992) Fuzzy interactive multiobjective programming. Jap J Fuzzy theory Syst 4(1):85-96 

Seiford L, Yu PL (1979) Potential Solutions Of Linear Systems: The Multi-Criteria Multiple Constraint Levels Program. 
J Math Anal Appl 69:285–303  

Shanmugapriya K (2012) Domain Driven Classification of Customer Credit Data for Intelligent Credit Scoring Using 
Fuzzy Set and MC2. Int J Comput Inform Tech 1:34–38  

Shi Y, Liu YH (1993) Fuzzy Potential Solutions in Multicriteria and Multiconstraints Levels Linear Programming 
Problems. Fuzzy Set Syst 60:167–179  

Shi Y, Liu YH (1997) A Fuzzy Potential Solution Approach to Multi-Criteria and Multi-Constraint Level Linear 
Programming Problems. In: Clímaco J. (eds) Multicriteria Analysis. Springer, Berlin 

Talluri S, Narasimhan R (2003) Vendor Evaluation with Performance Variability: A Max-Min Approach. Eur J Oper 
Res 146:543–552  

Wadhwa V, Ravindran AR (2007) Vendor Selection in Outsourcing. Comput Oper Res 34:3725–3737  

Wang TY, Yang YH (2009) A Fuzzy Model for Supplier Selection in Quantity Discount Environments. Expert Syst 
Appl 36:12179–12187  

Werners B (1987) An Interactive Fuzzy Programming System. Fuzzy Set Syst 23:31–147 

Wu D, Zhang Y, Wu D, Olson DL (2010) Fuzzy Multi-Objective Programming For Supplier Selection and Risk 
Modeling: A Possibility Approach. Eur J Oper Res 200:774–787  

Zimmermann H-J (1978) Fuzzy Programming and Linear Programming with Several Objective Functions. Fuzzy Set 
Syst 1:45-55 

Zhong Y, Chen D, Cui G, Jia Y, Li Y, Liao Y (2013) The Theory of Multi-Criteria and Multiple Constraint-Level Linear 
Programming for Oilfield Development. Procedia Comput Sci 7:141–148  

Zouggari A, Benyoucef L (2012) Simulation Based Fuzzy TOPSIS Approach for Group Multi-Criteria Supplier 
Selection Problem. Eng Appl Artif Intel 25:507–519 

 

APPENDICES  

 

Min                                                           

Min                                                         

Min                                                         

Subject to:  

                         (A.1) 

                         (A.2) 

                         (A.3) 

                                                               (A.4) 

                      (A.5) 
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                          (A.6) 

                          (A.7) 

                      (A.8) 

                          (A.9) 

                             (A.10) 

                      (A.11) 

                          (A.12) 

                               (A.13) 

                        (A.14) 

                        (A.15) 

                        (A.16) 

     ,                                (A.17) 

     
         

         
 ;                     (A.18) 

                    (A.19) 

    ,                  (A.20) 

 

  

Table 1. Numerical example: Data 

Supplier Quantity level Price 

($) 

% of late 

delivery 

% of rejects Capacity 

constraint 

S1 Q
< 239 

240 Q
< 479 

480 Q
 

10 

9.5 

9 

0.1 0.2 960 

S2 Q
< 179 

180 Q
< 593 

594 Q
 

12 

11.5 

11 

0.2 0.1 800 

S3 Q
< 329 

330 Q
< 659 

660 Q
 

8 

7.5 

7 

0.15 0.15 1000 
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Table 2. Numerical example: Upper and lower bounds 

Objective 

function 

Maximum value Minimum value 

1G
 

2G
 

3G
 

12600 

220 

228 

5600 

80 

80 

 

Table 3. Numerical example: Solutions 

Iteration 1  2  

Phase I II I II 

1S
 11x

=146 11x
=32 11x

=32 11x
=32 

2S
 21x

=114 2x
=0 2x

=0 2x
=0 

3S
 

1G
 

2G
 

3G
 

1  

2  

3  

33x
=660 

7448 

136.4 

139.6 

0.736 

0.597 

0.597 

33x
=888 

6536 

136.4 

139.6 

0.866 

0.597 

0.597 

33x
=888 

6536 

136.4 

139.6 

0.866 

0.597 

0.597 

33x
=888 

6536 

136.4 

139.6 

0.866 

0.597 

0.597 

 

Table 4. Numerical example: Case analysis 

 

 

 

 

 

 

 

 

 

Case 
( 21,

) 1S
 2S

 3S
 1G

 2G
 3G

 

1. ( =0) (1,0) 
11x

=81 21x
=59 33x

=660 
6138 118.9 121.1 

2. (  =0.3) (0.7,0.3) 
11x

=32 2x
=0 33x

=888 
6536 136.4 139.6 

3. (  =0.5) (0.5,0.5) 
11x

=38 2x
=0 33x

=962 
7114 148.1 151.9 
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Table 5. Comparison of solutions for different models 

Case Method                                    

 Max-min    =81    =59    =660 6138 118.9 121.1 0.923 0.7221 0.7223 (1.0, 0) 

1 Fuzzy 

programming 

(Liu and Shi, 

1994) 

   =146    =114    =660 7448 136.4 139.6 0.736 0.5971 0.5973 (0.7, 

0.3) 

 Proposed 

approach 

   =32    =0    =888 6536 136.4 139.6 0.866 0.5971 0.5973 (0.7, 

0.3) 

 Max-min    =81    =59    =660 6219 118.9 121.1 0.992 0.7221 0.7223 (1.0, 0) 

   Fuzzy 

programming 

(Liu and Shi, 

1994) 

   =146    =114    =660 8192 136.4 139.6 0.736 0.5971 0.5973 (0.7, 

0.3) 

 Proposed 

approach 

   =32    =0    =888 7189 136.4 139.6 0.866 0.5971 0.5973 (0.7, 

0.3) 

 Max-mi    =81    =59    =660 6138 130.8 121.1 0.923 0.7221 0.7223 (1.0, 0) 

   Fuzzy 

programming 

(Liu and Shi, 

1994) 

   =146    =114    =660 7448 150.0 139.6 0.736 0.5971 0.5973 (0.7, 

0.3) 

 Proposed 

approach 

   =32    =0    =888 6536 150.0 139.6 0.866 0.5971 0.5973 (0.7, 

0.3) 

 Max-min    =81    =59    =660 6138 118.9 133.2 0.923 0.7221 0.7223 (1.0, 0) 

   Fuzzy 

programming 

(Liu and Shi, 

1994) 

   =146    =114    =660 7448 136.4 153.5 0.736 0.5971 0.5973 (0.7, 

0.3) 

 Proposed 

approach 

   =32    =0    =888 6536 136.4 153.5 0.866 0.5971 0.5973 (0.7, 

0.3) 

 Max-min    =81    =59    =660 6751 130.8 121.1 0.923 0.7221 0.7223 (1.0, 0) 

   Fuzzy 

programming 

(Liu and Shi, 

1994) 

   =146    =114    =660 8192 150.0 139.6 0.736 0.5971 0.5973 (0.7, 

0.3) 

 Proposed 

approach 

   =32    =0    =888 7189 150.0 139.6 0.866 0.5971 0.5973 (0.7, 

0.3) 
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 Max-min    =81    =59    =660 6751 118.9 133.2 0.923 0.7221 0.7223 (1.0, 0) 

   Fuzzy 

programming 

(Liu and Shi, 

1994) 

   =146    =114    =660 8192 136.4 153.5 0.736 0.5971 0.5973 (0.7, 

0.3) 

 Proposed 

approach 

   =32    =0    =888 7189 136.4 153.5 0.866 0.5971 0.5973 (0.7, 

0.3) 

 Max-min    =81    =59    =660 6138 130.8 133.2 0.923 0.7221 0.7223 (1.0, 0) 

   Fuzzy 

programming 

(Liu and Shi, 

1994) 

   =146    =114    =660 7448 150.0 153.5 0.736 0.5971 0.5973 (0.7, 

0.3) 

 Proposed 

approach 

   =32    =0    =888 6536 150.0 153.5 0.866 0.5971 0.5973 (0.7, 

0.3) 

*Where   :     =10%;   :    =10%;   :    =10%;   :     =10% and    =10%; 

  :     =10% and    =10%;   :    =10% and   =10% 

  

Table 6. Degree of closeness with various    for case #1 in Table 5 

(        ) Method*          

(0.1,0.1,0.8) (1) 

(2) 

0.407 

0.397 

0.345 

0.344 

0.341 

0.341 

(0.1,0.2,0.7) (1) 

(2) 

0.406 

0.395 

0.311 

0.310 

0.298 

0.298 

(0.1,0.33,0.57) (1) 

(2) 

0.404 

0.394 

0.280 

0.279 

0.243 

0.243 

(0.1,0.4,0.5) (1) 

(2) 

0.403 

0.393 

0.271 

0.270 

0.213 

0.213 

(0.2,0.1,0.7) (1) 

(2) 

0.389 

0.368 

0.305 

0.303 

0.298 

0.298 

(0.2,0.2,0.6) (1) 

(2) 

0.388 

0.367 

0.273 

0.270 

0.256 

0.256 

(0.2,0.33,0.47) (1) 

(2) 

0.386 

0.365 

0.247 

0.244 

0.200 

0.200 
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(0.2,0.4,0.4) (1) 

(2) 

0.385 

0.364 

0.242 

0.239 

0.170 

0.170 

(0.33,0.2,0.47) (1) 

(2) 

0.364 

0.329 

0.231 

0.220 

0.199 

0.199 

(0.33,0.33,0.33) (1) 

(2) 

0.362 

0.327 

0.214 

0.203 

0.142 

0.142 

(0.33,0.4,0.26) (1) 

(2) 

0.361 

0.326 

0.217 

0.206 

0.165 

0.165 

(0.33,0.5,0.16) (1) 

(2) 

0.360 

0.325 

0.233 

0.223 

0.206 

0.206 

(0.4,0.2,0.4) (1) 

(2) 

0.352 

0.310 

0.214 

0.198 

0.170 

0.170 

(0.4,0.33,0.26) (1) 

(2) 

0.350 

0.308 

0.204 

0.187 

0.137 

0.137 

(0.4,0.4,0.2) (1) 

(2) 

0.350 

0.308 

0.210 

0.194 

0.165 

0.165 

(0.4,0.5,0.1) (1) 

(2) 

0.348 

0.306 

0.233 

0.218 

0.206 

0.206 

Method*: (1) Fuzzy programming (Liu and Shi, 1994); 

(2) Proposed approach 
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