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Abstract 

The Portable Executable (PE) format represents the file format for executables used by 

Windows based systems. Many malware families are targeting this file format, the PE being 

at the core of Microsoft NT. As technology progresses, so are the malware samples and the 

techniques used by the attackers. This article presents a high overview of some of the 

methods, indicators and flows used to quickly triage or analyze PE malware. The focus is 

being targeted towards a faster triaging process and key takeaways for researchers that are 

dealing with false-positive and false-negative fixing. In each sample classification, time is of 

the essence. Fast methods that reveal important results should be prioritized first as any 

indicators of malicious activity or pattern could influence the verdict and help researchers to 

deal with samples more efficiently. Classifying false positives is always subjective based on 

the context. Depending on the engine that generates FPs, this job can become harder or 

easier. Understanding the root cause of false-positives and having knowledge of the 

systems is an important factor. The article strictly refers to processes and analysis 

techniques used for quickly triaging and classifying tricky samples and it does not focus on 

deep malware family reversing and threat analysis. The results indicated that an efficient PE 

malware triaging process is based on several factors including the file metadata, the 
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telemetry, and the events surrounding the sample at the execution time. Threat intelligence 

information will greatly help in the analysis process and will provide an efficient overview 

before starting the manual reverse engineering research. 
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INTRODUCTION 

Portable Executable (PE or PECOFF) file format is the Windows executable format. This 

includes .exe, .dll, .sys and others. It is one of the most widespread file formats in terms of 

malware samples, directly proportionate to the popularity of Windows hosts. A security 

researcher or a malware analyst that focuses on studying PE malware can often be presented 

with difficult samples that are on the edge of the spectrum. This is especially true for teams that 

are working directly with some form of engine detection, be it static, dynamic or a combination of 

both. In order to produce detection rules or modify them, some form of manual analysis is 

needed first, in order to have a research baseline. The false-positives (FP) and false-negatives 

(FN) are samples that are either clean files that are detected by the engine or malicious files 

that are not detected in any way. The engine is referred to the software that implements the 

detection rules and makes decisions based on the implemented factors. 

The article tackles some of the edge cases in terms of false-positive identification and 

the triage process, as well as some of them most useful and result-oriented techniques in 

analyzing malware. Key aspects of a PE file analysis will be presented along with an overall of 

processes that goes through analyzing a high number of submissions. The article is not oriented 

on analyzing specific samples that are known to be clean or malware but rather the edge cases 

that have a high probability of being both. 

The entire general manual analysis process can be viewed or abstracted as a 

percentage sum that is directly correlated with the sample classification. Supposedly, a 

researcher might start with the 100% assumption that a file is clean or malware depending on 

the context. If the analyzed file received is a false-positive, it could be natural that the 

researcher will expect the sample to be a clean one. A neutral position is also something to be 

taken in consideration when not a lot of context is presented from the submission. During the 

analysis process, each factor lowers and increases the assumption rate up until the deciding 

point which can directly classify a sample. For example, if a sample appears to be clean but at 

some point, a shellcode is decoded in memory and executed inside a new process, that's an 

indication that the sample analyzed has clear malicious intentions. Depending on the study, an 

in-depth research can be further conducted, or the sample can be categorized as malware and 
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the detection can be fixed accordingly. Regardless if the researcher uses initial assumptions or 

not, in the end, the sample classification is validated by reversing the sample and placing the 

right verdict. [1] 

Among some of the factors that influence the decision making in the first initial stage, we 

can note particular ones such as lack of metadata, behavior of the GUI if any, user interaction, 

external dependencies or general execution flow. The classification should not be done solely 

on these factors alone however, they can greatly help in quickly determining the cause of the 

miss-classification or help in narrowing down the possibilities. Static analysis and dynamic 

analysis methods as well as threat research are approached from a practical point of view. [2] 

 

ADVANCE TECHNIQUES FOR BYPASSES 

Some malware samples are using software solutions for packing, obfuscation, anti-debugging 

and anti-analysis. These solutions can be very time-consuming to reverse and oftentimes, the 

time allocated to reverse such solutions that hide the malware code is much greater than the 

researcher's time dedicated for a specific sample. However, there are some workarounds for 

these specific solutions. [3] 

One of the common ones is Themida, which is a complex software, very customizable, 

that uses virtualization in order to encapsulate the malicious code. If used correctly, the malware 

will execute on the host machine and will be protected entirely by the Themida VM. Even so, if 

the malware creator decides to use "unsafe" techniques with the malware sample, we can 

potentially benefit. For example, if the malware is leaving the packed binary and does a process 

injection, we can actually catch the malware while executing in another process and we can 

dump that process to obtain the malicious binary. Another example could be the case of a 

Dropper or a Downloader. If the analyzed sample is a dropper, it will save a payload and 

execute it on the machine. Most of the time, the Dropper's routine will also delete the dropped 

file however, we can intervene and stop the process right before the file removal occurs. And 

again, we obtained another stage of the malware chain which we can analyze and pinpoint the 

exact intents of the binary. [4] 

Another interesting case to study is the DLL Preload issue that is affecting a certain legit 

executable. We can take the example of SysInternals tool suite which has a large variety of 

software. Some of them are exposed to DLL Preload. This is a type of vulnerability which is 

defined by the executable trying to load a certain library (DLL) from the root path of the 

directory. If the library is not verified in any way before loading and executing it, then we can 

provide malicious code as external functions in DLLs to be executed by our clean executables. 
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Oftentimes, they come packed so when a Dropper is downloading which looks to be valid 

software, then most probably it will use a DLL to inject its malicious code. [5] 

 

WINDOWS API BREAKPOINTS 

The importance of Windows API usage in reversing a sample is unmatched, one of the key 

factors in the analysis process is represented by finding and backtracking the Windows API 

imported by the executable. When analyzing a complicated sample, Windows API usage can 

act as checkpoints and guidelines inside the maze and are very helpful for a researcher that has 

access to them, providing that the sample does not use some form of obfuscation. Even if the 

sample is using dynamically resolved imports, a process dump at the right time and an IAT 

manual fix will reveal the needed information. However, in cases where the PE file contains 

inline functions combined with static linking, the process gets considerably harder. In these 

situations, tools and functionalities such as IDA FLIRT [6] are recommended, they are capable 

of identifying functions based on checksums and function hash signatures for a big number of 

libraries and compilers. 

Key function breakpoints are very important when analyzing PE malware. We can use 

the x64 debugger as an example. We can also classify Windows API calls and expect some 

techniques depending on the malware's intentions. Some of the examples include: 

CreateProcessInternalW - API call used for process injection, the Windows API gateway for 

high level create process calls; 

CreateRemoteThread - often times used to patch certain binaries with DLLs, can be commonly 

found in cracks and keygens; 

WriteProcessMemory - used in conjunction with process injection techniques; 

 

We can use x64 debugger even before the modules are being loaded, either dynamic or static 

from imports. This procedure places breakpoints on unresolved API calls which helps in 

analyzing important API calls. A word of caution is the TLS PE file section which can tamper 

with the breakpoint routine.  [7] 

When using breakpoints on the aforementioned API calls, correlation with the stack 

parameters and the calling convention is imperative. When the breakpoints hit, we must check 

the MSDN documentation for that specific call. For example, CreateRemoteThread uses the 

following arguments: 

HANDLE CreateRemoteThread( 

  HANDLE                 hProcess, 

  LPSECURITY_ATTRIBUTES  lpThreadAttributes, 
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  SIZE_T                 dwStackSize, 

  LPTHREAD_START_ROUTINE lpStartAddress, 

  LPVOID                 lpParameter, 

  DWORD                  dwCreationFlags, 

  LPDWORD                lpThreadId 

); 

 

By looking on the stack for the first argument, hProcess, we can actually see the process in 

which the injection is taking place. Dumping the process and reconstructing the IAT will reveal 

the code that’s about to be injected in the new process. 

 

BEHAVIOR ANALYSIS 

Behavior analysis is sometimes the fastest way of identifying and classifying a PE sample. 

Depending on the protection mechanisms used by the sample, the behavior analysis can yield 

relevant results or none at all. The techniques that can be used in this area are very broad, 

covering aspects such as sandboxing, emulation, virtualization and hypervisor analysis. Some 

automated systems designed for behavior analysis are even acting as automated debuggers, 

analyzing and monitoring memory usage, API calls, file access and more. [8] 

API Monitor is a tool that helps monitor all the Windows API calls made by an 

executable. We can note that this tool is based on dynamic analysis and runs the sample in 

order to make the observation, but it can also be attached to a running process. It's important to 

monitor the Windows API calls when dealing with a sample that's not very verbose in terms of 

output or GUI messages. [9] 

Anti-debugging is one of the protection mechanisms usually employed by some malware 

samples that are trying to avoid analysis, it can range from multi-thread anti-debug timers, to 

mutexes, shared files and folders and many more. Some samples are using interesting anti-

debug tricks like creating a mutex in order to prevent other external processes from attaching or 

debugging the main process. [10] 

Some old and deprecated techniques of anti-debug are using PE flags to detect the 

debugging status of an executable, evasion debugger plugins or custom scripts can be used in 

order to bypass this. When starting a process under a debugger, multiple flags are being 

modified. For example, the debug flag present in the Process Environment Block (PEB) at offset 

0x79. This value can be modified after loading the sample inside the debugger but before the 

sample starts executing user code.  
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The above action can be achieved, for example, using a WinDBG scripts: 

r?$t0 = (ntdll!_peb *) @$peb;?? @$t0->BeingDebugged;eb (@$t0+2) 0;?? @$t0-

>BeingDebugged 

 

There are many implementations of obfuscation techniques, anti-debugging, anti-analysis 

techniques, anti-sandboxing and VM, anti-tampering [11]. Most of the common ones are 

detailed on technical research papers authored by many researchers. When dealing with a PE 

sample, it all comes down to the code that's being analyzed. There are countless factors that 

can dictate the analysis process, being it dynamic or static. When dealing with non-APT, 

common samples identified in the wild, there is a high chance that the sample will use some 

form of the public documented techniques to do malicious activities or to avoid detection and 

analysis. However, more complex malware families and standalone samples will be very 

subjective and custom, meaning that usual techniques might be modified, or new and 

alternative techniques might be used by the malware author. In this case, a high probability of 

the attacker making more variants of the techniques will also increase. Threat intelligence and 

sample hunting will definitely be a key aspect to consider, and depending on the results, a new 

technique might be worth documenting if it is being used in a widespread malware family. It all 

comes down to the sample analyzed and the intel gathered for the PE. 

One key aspect in the sample classification process is represented by threat intelligence 

as well. Sometimes, a standalone executable might look malicious or intrusive at first glance. 

Dealing with false positives often requires seeing the entire documented picture. In the end, it 

can all be referenced to the entire data collected that creates a full overview of the file. 

Sometimes, looking at a file standalone will not be enough to classify it accordingly. A good 

example would be the file infectors who are modifying specific files across the system. [12] 

 

INITIAL TRIAGING PROCESS 

Behavior analysis or a quick sample detonation can oftentimes be very handful. Dependencies 

and external libraries required by the samples are sometimes a strong indication of a possible 

false-positive. In this case, the likelihood of the file being malicious could drastically decrease or 

it could be very specific. It is also worth mentioning that cracks and keygens often rely on some 

form of external dependencies like the program that's being targeted. They are usually very 

easy to catch and most of the time they are self-explanatory in their artifact search such as 

specific game registry keys or file paths that contain a game name, DLLs or other metadata. 

There's also the risk, however, that a crack or keygen might come with some additional 

payloads that will turn the sample into a trojan or spyware. That’s where the analysis gets more 
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complicated and from samples analyzed, attackers are usually embedding this type of malware 

into Windows crack activators. [13] 

When presented with a file for the triaging process, a quick disassembly tool with file 

parser capabilities such as BinaryNinja can provide a very useful start [14]. A lot of important 

information can be accessed from such tools. Quick wins like imports, strings, segments and 

entropy are always important. More advanced disassemblers do provide possibly more accurate 

details and can present extra functionalities but those come with a heavy loading and parsing 

process. When looking for an initial fast overview of the disassembly, a more lightweight tool 

can be more suited. 

The entropy represents a huge indicator in terms of initial sample classification. Entropy 

calculation plugins are available for most popular disassemblers or standalone executables are 

publicly available. These tools show a graphical representation of the entropy for given memory 

segments. A high entropy area inside a data section could possibly mean an encrypted payload 

such as shellcodes or encrypted code paths, even an entire encrypted PE [15]. Cross-

references to the start address offset at the beginning of the high entropy area is a common 

technique to identify potential usages. In known packers such as UPX we can note that the 

entropy of the files is really high across the majority of the PE file. That’s because the packer 

leaves only a small code routine that decodes the full executable and passes the execution flow 

to it, afterwards. 

We can make a high level of abstraction of the PE malware analysis process as a threat 

or malicious level defined in percentages which increases or decreases depending on the 

number of artifacts identified. 

A great benefit from a malware analysis arsenal would represent a quick triage process 

for PE files designed for analysis and FP or FN fixing. Just briefly looking at the code, summing 

up the threat intel received or obtained from the file can oftentimes create a solid baseline for 

the research.  

The filename should not be overlooked, a file that was received or submitted with a 

suspect name such as financial_report_2020.pdf.exe can immediately reveal intentions. Or a file 

submitted that has a history of many different and non-related names represents an important 

factor as well. If the researcher has access to this type of information, it can become a key 

aspect in the classification process. 

For more advanced systems, an important consideration that could dictate the analysis 

process is the similarity of the analyzed file compared to other samples. Machine learning and 

artificial intelligence started to be highly used across the industry by multiple top antivirus 

vendors. An engine that incorporates machine learning for the decision making will always have 
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the advantage of comparing samples and better understanding the context of the file. For this 

specific functionality, information collection processes such as file metadata extraction, behavior 

analysis and context flag generation stand at the base of the entire system. [16][17] 

 

CONCLUSION 

When dealing with a high number of samples, efficiency should always be considered. Just like 

applications have low-hanging fruits in terms of obvious security vulnerabilities and issues, so 

are the malware samples. Some samples might use advanced anti-detection methods but fail in 

correctly applying them or expose key artifacts that compromise the anti-forensics methods 

implemented. Having a high overview of the sample before starting the manual analysis process 

and having as much threat intel information as possible in the beginning will greatly enhance a 

researcher’s efforts in correctly and efficiently classifying files. This article is not an in-depth 

research and analysis process of specific techniques but rather an overview of techniques, 

flows and key considerations that help in processes such as initial quick triaging, false-positives 

and false-negative fixing. The scope for future research includes identifying new valuable 

telemetry data, PE metadata, and local sensor deciders capable of catching and reporting 

relevant details regarding the execution environment for a particular suspicious sample. 

The machine learning applied to PE malware analysis plays an important role in 

comparing similar samples and bulk classifications. Important research represents the analysis 

of encrypted or custom obfuscated samples and how those samples affect the machine learning 

algorithms based on generic flags extracted from PE files. 
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