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Abstract 

This paper studies a commodity trader’s problem of investing in transportation capacity for 

hopes of arbitrage opportunity. In this model setting the investment of transportation capacity 

is limited, and the commodity trader is facing risk due to financial distress cost. We analyze 

settings regarding the arbitrage opportunity of capacity pricing. Besides two trivial problem 

settings (risk neutral and mispriced high), this study shows transportation capacity investment 

is limited for settings, in which there are arbitrage opportunities (mispriced low and two 

measures). 

 

Keywords:  Capacity Management, Operational Hedging, Supply Chain Management, Operations 

Management, Commodity Transportation 

 

 

INTRODUCTION 

To motivate this study, we consider a commodity producer (or trader) located in Market 1, which 

is the domestic spot market, that buys transportation capacity in order to ship the commodity to 

another market, i.e., Market 2. We assume to production level being zero, hence the commodity 

producer is regarded as a trader, who invests on the transportation capacity if there is a value to 

ship the commodity to the Market 2. Moreover, by assuming the Market 2’s spot market price is 

being constant; then, the domestic spot market price, Market 1, results the uncertainty in the 

decision-making problem. Therefore, the profit of the commodity trader in a single-period 
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problem is stochastic and this leads to the financial distress cost for the trader, which is - well 

identified and researched in the finance literature - the risk associated with the bankruptcy cost 

and the corporate taxes of the firm. 

 This paper analyzes a capacitated model for the commodity trader, who is value-

maximizer or risk-averse. This difference is caused by the upper bound on how much the trader 

buys the transportation capacity to ship the commodity from Market 1 to Market 2. This problem 

approach is investigated in four settings based on the measure and pricing of the transportation 

capacity: risk neutral, mispriced low, mispriced high, and two measures. The main research 

question for the commodity trader in Market 1 is about the structure of the optimal transportation 

capacity investment policy. How does the optimal policy change with respect to the parameters 

of the model? In this work, we characterize the optimal investment decision and also perform 

comparative static analysis for the commodity trader. 

Natural gas producers and the local distribution companies in the transportation market 

for the natural gas market in US are the motivation behind this study (Birge, 2000; Civelek, 

2014). The number of studies incorporating risk in the operations management is limited and 

also focused in the mean-variance analysis context; thus, the main contribution of this study is 

using more relevant evaluation of the trader instead of using the utility theory. This paper also 

incorporates the financial distress cost into the trader’s evaluation in order to represent the risk 

associated with bankruptcy costs and corporate taxes. This allows us to show the impact of this 

risk in the structure of the optimal capacity investment decisions. 

Section 2 reviews the related literature and places the contribution of this study. Model 

setting is presented in Section 3; then, the analysis of the problem for value maximizer trader 

and risk averse trader are provided in Section 4 and 5, respectively. Section 6 concludes this 

work with discussion and future research.  

 

LITERATURE REVIEW 

Flexibility in production processes is defined as the hedge against diversity in general terms (De 

Groote, 1994). On the other hand, risk analysis and operations management use the 

operational hedging concept as a flexibility. The operational hedging is defined as mitigating risk 

by using financial instruments (Chod et al., 2010). This study uses operational flexibility to 

create value to let transporting the commodity to Market 2 in hopes of selling the commodity 

with a higher price. Therefore, the commodity trader can get value by investing on the 

transportation capacity, which is an operational hedging tool against the uncertainty about the 

Market 1’s spot market price. 
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Chen and Federgruen (2000) review the inventory management literature by using the mean-

variance analysis and maximizing the expected utility functions. Eeckhoudt et al. (1995) show 

the optimal inventory level of a single product newsboy decreases with risk aversion. In addition 

to those studies in literature, Anvari (1987), Boukaiz and Sobel (1992), and Gaur and Seshadri 

(2005) study the problem of capacity investment under risk aversion. The main characteristic of 

this study separates it from papers from the literature is not using the mean-variance analysis.  

In the finance literature, the financial hedging has been extensively studied and used in 

recent operations management studies. Diamond (1984) states that the bankruptcy costs of a 

firm lead to hedging and emphasizes the importance of diversification in spite of the risk 

neutrality. Diamond (1984) also shows that small firms are more likely to hedge and the hedging 

reduces the probability to incur bankruptcy costs, and shareholders benefit from hedging 

because the bankruptcy brings real costs to them. Moreover, Smith and Stulz (1985) present 

the financial distress costs and corporate taxes as the reason of the risks of a firm. This study 

models the financial distress cost provided by Brown and Toft (2002), in which the only thing the 

value maximizer trader can do is financial hedging to avoid risky states of his or her financial 

distress costs. 

In light of capacity management literature incorporating risk, Birge (2000) used option 

pricing as a market hedge to incorporate risk into planning models by modifying capacity and 

resource levels. In this paper, we use similar exchanges of commodities like natural gas, but our 

study differentiates in using risk averse trader and two measure case for the price of the 

commodity. 

 

MODEL 

Notation used in this study: 

c1: Parameter that determines the overall effect of financial distress cost 

c2: Parameter that controls the curvature of the financial distress cost 

s1: Initial spot market price of Market 1 

μ: Mean of the normally distributed ln s1 

σ: Standard deviation of the normally distributed ln s1 

Δt: Time horizon length of the single period 

u: The rate for increased s1 

d: The rate for decreased s1, 0<d<1 

s1H: High value that s1 can get at the end of one period, s1H = ln us1 

s1L: Low value that s1 can get at the end of one period, s1H = ln ds1 

S2: Fixed price of the second market 
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p*: Probability that s1 will become s1H in risk neutral measure, Q 

p: Probability that s1 will become s1H in the other measure (trader’s belief) 

q: Capacity investment decision (decision variable) 

𝑞 : Upper bound on the capacity investment 

K: Unit price of the capacity 

P(q,s1): Profit at the end of the single period 

C(P(q,s1)): Financial distress cost at the end of the single period 

π(q): Expected profit at the end of the single period 

Q: Risk-neutral probability measure 

qu: Upper bound on the transportation capacity 

 

This paper uses the modeling approach using two different traders: Value maximizer and risk 

averse. In considering the trader’s problem, the model directly incorporates the value of the 

trader’s firm instead of using a utility function. The value maximizer trader maximizes the 

expected value of the firm, which is the expected cash flow minus expected financial distress 

cost. As for the risk averse trader, he or she focuses on maximizing the utility. We assume a 

risk-averse manager, whose compensation depends on a constant percentage of the firm’s 

profit at the end of the single trading period. Additionally, his or her mission is to mitigate the 

impact of low profit states as much as possible because of his or her utility. For each trader 

type, the present study analyzes four cases based on the probability measure and the pricing of 

the transportation capacity: (i) risk neutral, (ii) mispriced low, (iii) mispriced high, and (iv) two 

measures. 

There are two markets: Market 1, at where the trader buys and sells the commodity, and 

Market 2, at where the trader can ship the commodity and sell. The commodity trader buys the 

transportation capacity and also buys from Market 1 based on the spread among the random 

spot market price in Market 1 and the fixed price in Market 2. Regarding the single-period 

options pricing theory and the traditional assumptions on the stock prices, the uncertain 

commodity price, s1 has a lognormal distribution: ln s1 is normally distributed with mean μ and 

standard deviation σ. σ refers to the volatility of the price. By the binomial options pricing theory, 

we select the time horizon of the single period problem, Δt, small enough (in our numerical 

studies, we let one day as the length of the single period trading time horizon, so Δt= 1/365). 

Moreover, in order to match the mean log return and the variance of the price, we use the 

standard model for u and d: u=eσ Δt and d=1/u. Since the only uncertainty arises from s1, we 

assume a two-point discrete distribution for s1: s1 =s1H with probability p and s1L with probability 

1-p. 
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In the rest of the paper, we use s1H = ln us1 and s1L = ln ds1. We also assume s1H> S2> s1L to 

avoid trivial situations in the problem setting. Moreover, the expected future price of the spot 

Market 1 is equal to the initial prices under risk neutral pricing of the transportation capacity. By 

assuming the risk-free rate being zero, the probability of the high-price state, s1H, is p* = (1-

d)/(u-d). By assumption, the unit price of the transport capacity, K, is determined by the spread 

of the price between two market prices under the risk-neutral measure, Q: 

K=EQ   S2-s1 
+
 = 1-p*  S2-s1L      (1) 

The profit position at the end of the single period is P(q,s1)=q({S2-s1}
+-K).Hence, the 

corresponding financial distress cost regarding the profit in the future is 𝐶 𝑃 𝑞, 𝑠1  =

𝑐1𝑒
−𝑐2𝑃 𝑞,𝑠1 = 𝑐1𝑒

−𝑐2𝑞  𝑆2−𝑠1 
+−𝐾 , where c1>0 and c2>0. Then, the expected profit of the firm is 

π(q)=E[P(q,s1)-C(P(q,s1))]. 

 

Lemma 1. The expected value of the firm, π(q), is concave. 

 

VALUE MAXIMIZER TRADER 

 

In this section, we characterize the structure the optimal capacity investment decision of the 

value maximizer trader and perform an analysis of the comparative statics. In analyzing the 

behavior of the value function and analyzing the comparative statics, the following values are 

used for the parameters unless the change is specifically stated: c1=0.1, c2=3, s1=2, S2=ln2.5, 

μ=0.15 and σ=0.20. Moreover, the unit capacity price, K, is 0.1 in the mispriced low and 1.5(1-

p*)(S2-s1L) in the mispriced high. 

In the literature using operational flexibility and hedging, the models are based on the 

exponential utility functions and mean-variance maximizer manager. Hence, the main 

distinguishing feature of our model is using the expected value of the firm directly without using 

any utility function. In the model, the firm’s problem is: 

maxq π q =E P q,s1 -C P q,s1       (2) 

 

Risk neutral 

In this case, there is only one measure, which is risk neutral. Then, the expected profit of the 

firm is EQP(q,s1)=K-K=0. Therefore, the firm’s problem is 𝑚𝑎𝑥𝑞 𝜋 𝑞 = 𝐸 −𝐶 𝑃 𝑞, 𝑠1   =

𝑚𝑖𝑛𝑞 𝐸 −𝐶 𝑃 𝑞, 𝑠1   , subject to 𝑞 ≤ 𝑞  and 𝑞 ≥ 0. 
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Proposition 1. The optimal transportation capacity investment, q*, is zero. 

 

By Proposition 1, the commodity trader never enters the transportation capacity business if 

there exists only risk neutral measure. With only risk neutral measure, there is no incentive for 

the trader to buy the transportation capacity; therefore, the solution is trivial. 

 

Mispriced low 

The price of the capacity is lower than its value under risk neutral measure: K < EQ[{S2-s1}
+]. 

 

Proposition 2. Let 𝑞 , is the solution of the following first-order condition: 

 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 − 𝑐1𝑐2 𝑝
∗𝐾𝑒𝑐2𝑞𝐾 −  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾 𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  = 0.Then, the 

optimal transportation capacity decision, 𝑞∗ > 0, is equal to 𝑞  if 𝑞 < 𝑞 , or 𝑞  if 𝑞 ≥ 𝑞 . 

 

Proposition 2 shows that the trader gets value for investment is the capacity is mispriced low. 

This value is, in fact, a pure arbitrage opportunity in the market since the commodity trader is 

buying from the Market 1 and selling it in the Market 2. 

 

Proposition 3. In the comparative statics, the following holds: (1) 𝜕𝑞∗/𝜕𝑐1 < 0, (2) 𝜕𝑞∗/𝜕𝑐2 < 0, 

(3)𝜕𝑞∗/𝜕𝐾 < 0, (4) 𝜕𝑞∗/𝜕𝑆2 > 0, (5) 𝜕𝑞∗/𝜕𝑠1 < 0 and (6) 𝜕𝑞∗/𝜕𝜎 < 0. 

 

The value maximizer trader decreases its investment as the impact of the financial distress cost, 

c1 and c2, increase. This result is intuitive because the firm invests less as the impact of financial 

distress cost increases. In order to understand the impacts of K, S2, s1 and σ, we analyze the 

variance of the profit at the end of single period: 

𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  = 𝑞2 𝑝∗𝐾2 +  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾 2 −   1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 2       (3) 

 

Proposition 4. The impact of E[P(q,s1)] dominates the comparative statics of K, S2, s1 and σon 

the optimal investment, q*, instead of Var[P(q,s1)]. Thus, the following holds: 

 𝜕𝑞/. 𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  /. 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /. 

K <0 <0 0 

S2 >0 >0 <0 

s1 <0 <0 <0 

σ >0 >0 >0 
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Regarding the managerial insights for the unit transportation capacity price K, the fixed Market 

2’s price, s2, the initial price of the Market 1, s1, and the volatility of s1, σ, the value maximizer 

trader buys more on transportation capacity if the trader makes more profit on expectation 

whether there exists high or low risk caused by the variance of the profit. In other words, if s2 or 

σ increases, the value maximizer trader earns more profit on expectation and buys more 

transportation capacity although the variance of the profit increases. On the contrary, if K or s1 

increases, the value maximizer firm makes less money on expectation; thus, the trader invests 

less on the transportation capacity in spite of decreasing of the variance of the profit. Therefore, 

making more profit on expectation is more significant on the value-maximizer firm’s decisions 

regardless on the risk associated with the variance of the profit. 

 

Mispriced high 

The transportation capacity is priced high asK > EQ[{S2-s1}
+].  

 

Proposition 5. The optimal transportation capacity investment decision, q*, is zero. 

 

By Proposition 5, the commodity trader never enters the transportation capacity business if the 

capacity is mispriced high, in which selling the capacity enables the producer pure arbitrage. 

Consequently, this case of the value maximizer trader has a trivial solution, q*=0. 

 

Two-measures 

In this case, the capacity is priced fairly by the risk neutral measure and the expected profit is 

measures by the firm’s belief, which is different than the risk neutral measure. In order to avoid 

trivial solution, we assume p* > p: 

𝐸 𝑃 .   = 𝑞 −𝑝𝐾 +  1 − 𝑝  𝑆2 − 𝑠1𝐿 − 𝐾  = 𝑞 𝑆2 − 𝑠1𝐿  𝑝
∗ − 𝑝 > 0 ⇒ 𝑝∗ > 𝑝 

 

Proposition 6. Let 𝑞 , is the solution of the following first-order condition:𝑝∗ − 𝑝 − 𝑐1𝑐2 𝑝 1 −

𝑝∗ 𝑒𝑐2 1−𝑝∗  𝑆2−𝑠1𝐿  𝑞 −  1 − 𝑝 𝑝∗𝑒−𝑐2𝑝
∗ 𝑆2−𝑠1𝐿 𝑞  = 0.Then, the optimal transportation capacity 

decision, 𝑞∗ > 0, is equal to 𝑞  if 𝑞 < 𝑞 , or 𝑞  if 𝑞 ≥ 𝑞 . 

 

By Proposition 6, the trader maximizes its expected profit by investing on transportation 

capacity, because the fair price by risk-neutral measure is lower than the firm’s belief on the 

price, p* > p:  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 <  1 − 𝑝  𝑆2 − 𝑠1𝐿 . Therefore, the price of the capacity is low 

according to the firm’s belief and capacity investment creates value for the firm on expectation. 
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Proposition 7. In the comparative statics, the following holds: (1) 𝜕𝑞∗/𝜕𝑐1 < 0, (2) 𝜕𝑞∗/𝜕𝑐2 < 0, 

(3) 𝜕𝑞∗/𝜕𝑝 < 0, (4) 𝜕𝑞∗/𝜕𝑆2 < 0, (5) 𝜕𝑞∗/𝜕𝑠1 > 0 and (6) 𝜕𝑞∗/𝜕𝜎 < 0. 

 

The value maximizer trader invests less as the impact of the financial distress cost increases, c1 

and c2 increase. This result is intuitive since the trader invests less as the impact of the financial 

distress cost increases. Additionally, the transportation capacity investment approaches to zero 

as p gets closer to the risk neutral probability, p*, at where the problem becomes the case with 

one measure and the solution is trivial as q*=0. 

 

Proposition 8. The impact of Var[P(q,s1)] dominates the comparative statics of S2, s1 and σon 

the optimal investment, q*, instead of E[P(q,s1)]. The following holds: 

 

 𝜕𝑞/. 𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  /. 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /. 

S2 <0 >0 >0 

s1 >0 <0 <0 

σ <0 >0 >0 

 

The value maximizer firm invests more on transportation capacity if the variance of the profit 

decreases, because the firm makes more profit in expectation. This result is counter-intuitive 

regarding the case where the transportation capacity is low mispriced. In the comparative statics 

of S2 and σ, the value-maximizer firm invests less on capacity if S2 and σ increases in spite of 

expected profit improvement in both cases. The reason is that the variance of the profit 

decreases as S2 and σ increases. Therefore, the impact of variance of the profit dominates the 

effect of the expected profit on the optimal transportation capacity investment, in which there are 

different measures: risk-neutral and value-maximizer firm’s belief. Moreover, the risk associated 

with the variance of the profit is more significant than the expected profit on the capacity 

investment decision. 

 

RISK AVERSE TRADER 

In this study’s problem setting, the risk averse trader’s compensation depends on a certain 

percentage of the expected profit at the end of the single trading period, γP(.) where γ is the 

predetermined ratio of the trader’s payoff. Since the firm has a risk associated with the expected 
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financial distress cost, the risk-averse trader’s utility also consists of this cost, U(.) = E[-

C(γP(q,s1)]. Thus, the risk-averse trader’s problem is 

max
𝑞

𝐸 −𝐶 𝛾𝑃 𝑞, 𝑠1   = min
𝑞

𝐸 𝐶 𝛾𝑃 𝑞, 𝑠1   . 

 

Since γ is a scale factor for the P(.), we assume γ=1 for the rest of the paper. Hence, the risk-

averse trader’s problem is 

min
𝑞

𝐸 𝐶 𝑃 𝑞, 𝑠1   . 

 

In the following subsections, we analyze 4 setting for the risk averse trader: risk-neutral, 

mispriced low, mispriced high, and two measures. 

 

Risk neutral  

This case is similar to the value maximizer trader’s problem, in which the solution is trivial, q*=0. 

This result is intuitive since there is no arbitrage opportunity for the trader in using only risk 

neutral measure, in which the capacity is already fairly priced. 

 

Mispriced low 

This case provides arbitrage opportunity for the trader, in which the price of the capacity is lower 

than its value under risk-neutral measure. In other words, the capacity is low-mispriced: K < 

EQ[{S2-s1}
+] K< (1-p*)(S2 – s1L). 

 

Proposition 9. Let 𝑞 ,𝑞 =
1

𝑐2 𝑆2−𝑠1𝐿 
ln  

 1−𝑝∗  𝑆2−𝑠1𝐿−𝐾 

𝑝∗𝐾
 . Then, the optimal investment decision, 

𝑞∗ > 0, is equal to 𝑞  if 𝑞 < 𝑞 , or 𝑞  if 𝑞 ≥ 𝑞 . 

 

Since we assume only exponential utility function in this case, there is a closed form solution for 

q*. Before the comparative statics of the optimal investment decision, we first define mispricing 

ratio, ψ. 

 

Definition 1. The mispricing ratio, ψ, is used to quantify the low mispricing of the unit capacity 

price, K, regarding the risk-neutral measure, Q, and it is defined as 

𝜓 =
𝐾

 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 
, 

Where,  0 < ψ < 1 by definition. 
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Proposition 10. Let 𝜓  be the critical value for the mispriced ratio, at where comparative statics 

of S2 and s1 change. Additionally, 𝑆2
  and 𝑠1  are the critical values of S2 and s1 depending on 𝜓 . 

𝜓 =
1

 1 − 𝑝∗ 

𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊 
1−𝑝∗

𝑝∗𝑒
 

1 + 𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊 
1−𝑝∗

𝑝∗𝑒
 
 

𝑆2
 = 𝑠1𝐿 +

𝐾

𝜓  1 − 𝑝∗ 
 

𝑠1 =
1

𝑑
𝑒
𝑆2−

𝐾

𝜓  1−𝑝∗ . 

 

Then, the following holds in the comparative statics: 

(i) 𝜕𝑞 𝜕𝑐2 < 0 

(ii) 𝜕𝑞 𝜕𝐾 < 0 

(iii) 𝜕𝑞 𝜕𝜎 < 0 

(iv) 

𝜕𝑞 𝜕𝑆2 > 0 , 𝑠1𝐿 +
𝐾

1−𝑝∗ < 𝑆2 < 𝑆2
 

𝜕𝑞 𝜕𝑆2 = 0 , 𝑆2 = 𝑆2
 

𝜕𝑞 𝜕𝑆2 < 0 , 𝑆2
 < 𝑆2 < 𝑠1𝐻

 

(v) 

𝜕𝑞 𝜕𝑠1 > 0 , 𝑠1𝐿 < 𝑠1 < 𝑠1 

𝜕𝑞 𝜕𝑠1 = 0 , 𝑠1 = 𝑠1 

𝜕𝑞 𝜕𝑠1 < 0 , 𝑠1 < 𝑠1 <
1

𝑑
𝑒
𝑆2−

𝐾

 1−𝑝∗ 

 

 

Considering the comparative statics of the case for the value-maximizer firm, Proposition 3, the 

impacts of c2, K and σ are similar for the risk-averse trader. Hence, the risk averse trader also 

invests less on the transportation capacity as the effect of financial distress cost increases or 

the unit price of the capacity increases. However, he or she invests more on capacity as σ 

increases. Moreover, the impact of S2 and s1 depend on both K and ψ. Therefore, the impact of 

s1 depends on both K and S2. 

 

Mispriced high 

The capacity is high-mispriced: K > EQ[{S2-s1}
+] K > (1-p*)(S2 – s1L). 

 

Proposition 11. The optimal transportation capacity decision, q*, is zero. 

 

The risk averse trader never enters the transportation capacity investment business if the 

capacity is mispriced high. Similar to the value-maximizer firm, the solution is trivial, q*=0. 
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Two measures 

The transportation capacity is fairly priced by the risk neutral measure of the shipper; however, 

the value of the shipping capacity is measured by the risk averse trader’s measure. In order to 

avoid the trivial solution, p*>p is assumed. We also define a ratio called the likelihood of the 

increase of the price for each measure: L*and L. 

 

Definition 2. L*=p*/(1-p*) and L=p/(1-p) are the likelihood of an increase, upward movement, of 

the spot market price in market 1, s1, in the risk-neutral measure and the other measure (firm’s 

belief), respectively. 

 

Proposition 12. Let 𝑞 , 𝑞 =
1

𝑐2 𝑆2−𝑠1𝐿  
ln  

𝐿∗

𝐿
 . Then, the optimal investment decision, 𝑞∗ > 0, is 

equal to 𝑞  if 𝑞 < 𝑞 , or 𝑞  if 𝑞 ≥ 𝑞 . 

 

In the closed form solution of q*, L* is always greater than L, due to the assumption of p*>p. 

Therefore, the risk averse trader buys capacity if the likelihood of the trader’s belief, L, is less 

than the risk neutral measure, L*.Considering the case for the risk averse trader and value 

maximizer trader, the comparative statics are the same. Thus, the risk averse trader invests less 

on the capacity as the effect of the financial distress cost, c2, increases. Moreover, the risk 

averse trader invests less on the capacity as the trader’s belief about the probability on the 

upward movement in s1, p, increases. In other words, the transportation capacity investment 

becomes closer to zero as p gets closer to the risk-neutral probability, p*, in which the problem 

becomes the case with one measure and has a trivial solution, q*=0. As for analyzing the 

impacts of S2, s1 and σ, we analyze that via Proposition 8. 

 

CONCLUSION 

In this commodity trading model by the marketing flexibility with the financial distress cost, the 

trader invests to the maximum amount if shipping the commodity to the secondary market is 

valuable. We prove that there is a trivial solution, q* = 0, in the case in where only risk neutral 

measure and the mispriced high cases. As for the managerial insights regarding mispriced low, 

the trader does not invest infinitely on the capacity even if there might be a pure arbitrage 

opportunity. The intuition is that the financial distress cost becomes very significant and the 

trader will start to hurt himself or herself after a large transportation capacity investment; 

therefore, the variance of the profit and the financial distress cost clearly prevent the trader from 

investing infinite amount of capacity. Focusing on the comparative statics of s1, S2 and σ, the 
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impacts of the profit on expectation and the variance of the profit change in the mispriced low 

case. In determining the comparative static of s1, S2 and σ, the profit on expectation dominates 

the variance in the mispriced low case.  

The implications of this study are that the commodity trader needs to determine both 

operational and financial decisions simultaneously in order to mitigate risk from spot market 

prices and uncertain demand conditions. Managers in commodity production and trading 

companies, i.e., natural gas, oil and coal producers/traders, need to incorporate operational and 

financial decisions simultaneously in order to mitigate risk from spot market prices. Considering 

mispriced low case for the transportation capacity, the commodity trader does not invest 

infinitely on the transportation capacity even if a pure arbitrage opportunity may exist. This result 

provides an insightful managerial implication such that the financial distress cost becomes 

significant for the commodity trader. 

For future research, risk averse commodity trader’s problem or considerations of 

financial hedging decisions are promising research problems. There are also limitations of our 

study, in which commodity trading problems involve stochastic structure of commodity trading 

with transportation capacity investment and financial hedging in practice, Moreover, incentive 

limitations arise in the transportation of the commodities by commodity producer and traders in 

different markets. 
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APPENDIX 

Proof of Lemma 1. Since P(q,s1) is linear and C(P(q,s1)) is convex in q, P(q,s1)-C(P(q,s1)) is 
concave. By the preservation of concavity under expectation, π(q) is concave. 
 

Proof of Proposition 1. 𝑚𝑎𝑥𝑞 𝜋  𝑞 = 𝑚𝑖𝑛𝑞 𝑐1 𝑒
𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝∗ 𝑒−𝑐2𝑞𝑝

∗ 𝑆2−𝑠1𝐿   , 

subject to q ≥ 0. KKT conditions are (i)𝜆 ≥ 0, 

(ii)𝜆𝑞∗ = 0and(iii)𝑐1𝑐2𝑝
∗ 1 − 𝑝∗  𝑆2 − 𝑠1𝐿  𝑒

𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  − 𝑒−𝑐2𝑞𝑝
∗ 𝑆2−𝑠1𝐿   − 𝜆 = 0 ⇒ 𝑞∗ = 0 

and𝜆 = 0. Then, 𝑞 ≥ 0is weakly active. Since𝐸𝑄 𝐶 𝑃 𝑞, 𝑠1   and𝑞 ≥ 0 are convex, q*=0 is the 

global optimum by KKT. 
 

Proof of Proposition 2. max𝑞 𝜋  𝑞 = 𝑞  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 − 𝑐1 𝑝
∗𝑒𝑐2𝑞𝐾 −  1 −

𝑝∗ 𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  , subject to q ≥ 0. KKT conditions are (i)𝜆 ≥ 0, (ii)𝜆𝑞∗ = 0and (iii)  1 − 𝑝∗  𝑆2 −

𝑠1𝐿 − 𝐾 − 𝑐1𝑐2 𝑝
∗𝐾𝑒𝑐2𝑞𝐾 −  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  + 𝜆 = 0 ⇒ 𝑞∗ > 0 and 𝜆 = 0. 

Then,𝑞 ≥ 0is weakly active. Sinceπ(q) and𝑞 ≥ 0are concave,𝑞∗ > 0is the global optimum by 
KKT. Therefore, the first order condition gives the global optimum. 
 

Proof of Proposition 3. (1) 𝜕𝑞∗/𝜕𝑐1 < 0: 

𝜕𝑞

𝜕𝑐1
= −

−𝑐2 𝑝
∗𝐾𝑒𝑐2𝑞𝐾 −  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  

−𝑐1𝑐2
2 𝑝∗𝐾2𝑒𝑐2𝑞𝐾 −  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 2𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  

 

𝛼1 = 𝑝∗𝐾2𝑒𝑐2𝑞𝐾 −  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾 2𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾 > 0 

𝛼2 = 𝑝∗𝐾𝑒𝑐2𝑞𝐾 −  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾 𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾 =
1

𝑐1𝑐2

𝜕𝐸𝑄 𝐶 𝑃 𝑞, 𝑠1   

𝜕𝑞
 

Since 𝐸𝑄 𝐶 𝑃 𝑞, 𝑠1   is strictly increasing in q, 𝛼2 > 0. By definition, c1>0, c2>0. Therefore, 

𝜕𝑞∗/𝜕𝑐1 = −𝛼2/ 𝑐1𝑐2𝛼1 < 0. 

(2) 𝜕𝑞∗/𝜕𝑐2 < 0: 
𝜕𝑞

𝜕𝑐2
= −

−𝑐1𝑐2 𝛼2 + 𝑐2𝛼1 

−𝑐1𝑐2
2𝛼1

= −
𝛼2 + 𝑐2𝛼1

𝑐2𝛼1
< 0 

(3) 𝜕𝑞∗/𝜕𝐾 < 0: 

𝜕𝑞

𝜕𝐾
= −

−1 − 𝑐1𝑐2 𝑝
∗𝐾𝑒𝑐2𝑞𝐾  1 + 𝑐2𝑞𝐾 +  1 − 𝑝∗  1 + 𝑐2𝑞𝐾 𝑆2 − 𝑠1𝐿 −𝐾  𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  

−𝑐1𝑐2
2 𝑝∗𝐾2𝑒𝑐2𝑞𝐾 +  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾 2𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  

 

𝛼3 = 𝑝∗𝐾𝑒𝑐2𝑞𝐾  1 + 𝑐2𝑞𝐾 +  1 − 𝑝∗  1 + 𝑐2𝑞𝐾 𝑆2 − 𝑠1𝐿 − 𝐾  𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾 > 0 

⟹
𝜕𝑞

𝜕𝐾
= −

1 + 𝑐1𝑐2𝛼3

𝑐1𝑐2
2𝛼1

< 0 

(4) 𝜕𝑞∗/𝜕𝑆2 > 0:  

𝜕𝑞

𝜕𝑆2
=

 1 − 𝑝∗  1 + 𝑐1𝑐2𝑒
−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  1 − 𝑐2𝑞 𝑆2 − 𝑠1𝐿 −𝐾   

𝑐1𝑐2
2 𝑝∗𝐾2𝑒𝑐2𝑞𝐾 +  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 2𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  

 

 
In the case of low-mispriced capacity, K<(1-p*)(S2-s1L)S2>[K/(1-p*)]+s1L. By using the 
nonnegativity constraint on q: 

𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  1 − 𝑐2𝑞 𝑆2 − 𝑠1𝐿 − 𝐾  → 1, 𝑞 → 0 

𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  1 − 𝑐2𝑞 𝑆2 − 𝑠1𝐿 −𝐾  → 0, 𝑞 → ∞ 

⟹ 0 < 𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  1 − 𝑐2𝑞 𝑆2 − 𝑠1𝐿 −𝐾  < 1 
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Since 𝛼2 < 0, then 𝜕𝑞∗/𝜕𝑆2 > 0. 
(5) 𝜕𝑞∗/𝜕𝑠1 < 0: 

𝜕𝑞

𝜕 ln 𝑠1
= −

−
 𝑢−1 𝑑

𝑢−𝑑
− 𝑐1𝑐2  −

 𝑢−1 

𝑢−𝑑
 −𝑑𝑒−𝑐2𝑞 𝑆2−ln 𝑑𝑠1−𝐾 + 𝑐2𝑞 𝑆2 − ln𝑑𝑠1 −𝐾 2𝑒− 𝑆2−ln 𝑑𝑠1−𝐾   

−
𝑐1𝑐2

2

𝑢−𝑑
  1 − 𝑑 𝐾2𝑒𝑐2𝑞𝐾 +  𝑢 − 1  𝑆2 − ln𝑑𝑠1 −𝐾 2𝑒− 𝑆2−ln 𝑑𝑠1−𝐾  

 

=
 𝑢 − 1 𝑑 1 − 𝑐1𝑐2𝑒

−𝑐2𝑞 𝑆2−ln 𝑑𝑠1−𝐾  1 − 𝑐2𝑞 𝑆2 − ln 𝑑𝑠1 − 𝐾   

𝑐1𝑐2
2  1 − 𝑑 𝐾2𝑒𝑐2𝑞𝐾 +  𝑢 − 1  𝑆2 − ln 𝑑𝑠1 − 𝐾 2𝑒− 𝑆2−ln 𝑑𝑠1−𝐾  

 

By using nonnegativity constraint on q: 

𝑒−𝑐2𝑞 𝑆2−ln 𝑑𝑠1−𝐾  1 − 𝑐2𝑞 𝑆2 − ln𝑑𝑠1 −𝐾  → 1, 𝑞 → 0 

𝑒−𝑐2𝑞 𝑆2−ln 𝑑𝑠1−𝐾  1 − 𝑐2𝑞 𝑆2 − ln𝑑𝑠1 −𝐾  → 0, 𝑞 → ∞ 

⟹ 0 < 𝑒−𝑐2𝑞 𝑆2−ln 𝑑𝑠1−𝐾  1 − 𝑐2𝑞 𝑆2 − ln𝑑𝑠1 −𝐾  < 1 

⟹ −1 − 𝑐1𝑐2𝑒
−𝑐2𝑞 𝑆2−ln 𝑑𝑠1−𝐾  1 − 𝑐2𝑞 𝑆2 − ln 𝑑𝑠1 −𝐾  < 0 

 

Since  1 − 𝑑 𝐾2𝑒𝑐2𝑞𝐾 +  𝑢 − 1  𝑆2 − ln𝑑𝑠1 −𝐾 2𝑒− 𝑆2−ln 𝑑𝑠1−𝐾 > 0 and𝜕𝑞/𝜕 ln 𝑠1 < 0, then 
𝜕𝑞/𝜕𝑠1 =   𝜕𝑞/𝜕 ln 𝑠1 𝑠1 < 0. 
(6) 𝜕𝑞∗/𝜕𝜎 < 0: 

Let 𝛽2 = 𝑢𝐾𝑒𝑐2𝑞𝐾  𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾  and 𝜕𝑞/𝜕𝑢: 

𝜕𝑞

𝜕𝑢
=

𝑢 𝑆2 − ln 𝑠1 + ln𝑢 − 𝐾 − 𝑐1𝑐2𝛽2𝑒
−𝑐2𝑞 𝑆2−ln 𝑠1+ln 𝑢−𝐾 

𝑢 + 1
 

Let 𝛼4, 𝛼5, 𝛼6, 𝛽3 and 𝛼7: 

𝛼4 =  𝑢 𝑆2 − ln 𝑠1 + ln 𝑢 − 𝑐1𝑐2𝛽2𝑒
−𝑐2𝑞 𝑆2−ln 𝑠1+ln 𝑢−𝐾  

𝛼5 =  𝑢 𝑆2 − ln 𝑠1 + ln 𝑢 + 1 + 𝑐1𝑐2𝛽2𝑒
−𝑐2𝑞 𝑆2−ln 𝑠1+ln 𝑢−𝐾   𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾  1 + 𝑐2𝑞 + 1  

𝛼6 =  
𝐾2𝑒𝑐2𝑞𝐾

𝑢 + 1
+

𝑢

𝑢 + 1
 𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾 2𝑒−𝑐2𝑞 𝑆2−ln 𝑠1+ln 𝑢−𝐾 > 0 

𝛽3 =  𝐾𝑒𝑐2𝑞𝐾 + 𝑒−𝑐2𝑞 𝑆2−ln 𝑠1+ln 𝑢−𝐾   𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾  1 + 𝑐2𝑞 − 𝑢 + 1  

𝛼7 =  
𝑆2 − ln 𝑠1 + ln 𝑢 + 𝑢 + 1 + 𝑐1𝑐2𝛽3

 𝑢 + 1 3
> 0 

By substituting 𝛼4, 𝛼5, 𝛼6 and 𝛼7 into 𝜕𝑞/𝜕𝑢: 

𝜕𝑞

𝜕𝑢
= −

−
𝛼4

 𝑢+1 2 +
𝛼5

𝑢+1

−𝑐1𝑐2
2𝛼6

=
𝛼7

𝑐1𝑐2
2𝛼6

> 0 

By expanding u as 𝑢 = 𝑒𝜎Δ𝑡  and the chain rule: 
𝜕𝑞

𝜕𝑢
=

𝜕𝑞

𝜕𝑢
Δ𝑡𝑒𝜎Δ𝑡 > 0, Δ𝑡 > 0 

 

Proof of Proposition 4. We will show 𝜕𝑞/., 𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  /. and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /. for K, S2, s1and 

σ. First, 𝐸𝑄 𝑃 𝑞, 𝑠1  , 𝐸𝑄 𝑃
2 𝑞, 𝑠1   and 𝑉𝑎𝑟 𝑃 𝑞, 𝑠1   are the following: 

𝐸𝑄 𝑃 𝑞, 𝑠1  = 𝑞  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾   

𝐸𝑄 𝑃
2 𝑞, 𝑠1  = 𝑞2 𝑝∗𝐾2 +  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾 2  

𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  = 𝑞2 𝑝∗𝐾2 +  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 2 −   1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 2  
(i) 𝜕𝑞/𝜕𝐾 < 0,𝐸𝑄 𝑃 𝑞, 𝑠1  /𝜕𝐾 < 0 and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /𝜕𝐾 = 0: 

We proved in𝜕𝑞/𝜕𝐾 < 0 Proposition 3. Then, 𝐸𝑄 𝑃 𝑞, 𝑠1  /𝜕𝐾 and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /𝜕𝐾: 

𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  

𝜕𝐾
= −𝑞𝐾 < 0 

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝐾
= 𝑞2  2𝑝∗𝐾 − 2 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 + 2  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 

2
 = 0 

(ii) 𝜕𝑞/𝜕𝑆2 > 0,𝐸𝑄 𝑃 𝑞, 𝑠1  /𝜕𝑆2 > 0 and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /𝜕𝑆2 > 0: 

We proved 𝜕𝑞/𝜕𝑆2 > 0 in Proposition 3. Then, 𝐸𝑄 𝑃 𝑞, 𝑠1  /𝜕𝑆2 and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /𝜕𝑆2: 
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𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  

𝜕𝑆2
= 𝑞 1 − 𝑝∗ > 0 

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝑆2
= 2𝑞2𝑝∗ 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 > 0 

(iii) 𝜕𝑞/𝜕𝑠1 < 0,𝐸𝑄 𝑃 𝑞, 𝑠1  /𝜕𝑠1 < 0 and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /𝜕𝑠1 > 0: 

We proved 𝜕𝑞/𝜕𝑠1 < 0 in Proposition 3. 
𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑠1
= −𝑞 1 − 𝑝∗ < 0 ⟹

𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  

𝜕𝑠1
=

𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑠1

1

𝑠1
< 0 

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑠1
= −2𝑞2𝑝∗ 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 < 0 ⟹

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝑠1
=

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑠1

1

𝑠1
< 0 

(iv) 𝜕𝑞/𝜕𝜎 > 0,𝐸𝑄 𝑃 𝑞, 𝑠1  /𝜕𝜎 > 0 and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /𝜕𝜎 > 0: 

We proved 𝜕𝑞/𝜕𝜎 > 0 in Proposition 3. 
𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑢
= 𝑞 1 − 𝑝∗ > 0 ⟹

𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  

𝜕𝜎
=

𝜕𝐸𝑄 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑢

1

𝑢
Δ𝑡𝑒Δ𝑡 > 0 

Let 𝛽4 and 𝛽5: 

𝛽4 =  2 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾 2 −
𝐾2

𝑢 − 𝑑
> 0 

𝛽5 =
2𝑝∗ 𝑢 − 1  𝑆2 − 𝑠1𝐿 −𝐾 

𝑢
− 2𝑝∗ 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾  𝑆2 − 𝑠1𝐿 > 0 

 
𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝑢
=

𝑞2

𝑢 − 𝑑
 𝛽4 + 𝛽5 > 0 

By expanding u as 𝑢 = 𝑒Δ𝑡  and the chain rule: 
𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝜎
=

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝑢
Δ𝑡𝑒Δ𝑡 > 0 

 
Proof of Proposition 5. The problem of the value-maximizer firm is: 

max
𝑞

𝜋 𝑞 = 𝑞  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 − 𝑐1 𝑝
∗𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝∗ 𝑒−𝑐2𝑞𝑝

∗ 𝑆2−𝑠1𝐿    

⇒ min
𝑞

𝜋 𝑞 = 𝑞 − 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 + 𝐾 + 𝑐1 𝑝
∗𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝∗ 𝑒−𝑐2𝑞𝑝

∗ 𝑆2−𝑠1𝐿    

subject to q ≥ 0. KKT conditions are (i)𝜆 ≥ 0, (ii)𝜆𝑞∗ = 0and (iii) 𝐾 −  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 +

𝑐1𝑐2 1 − 𝑝∗  𝑆2 − 𝑠1𝐿  𝑒
𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  − 𝑒−𝑐2𝑞𝑝

∗ 𝑆2−𝑠1𝐿   − 𝜆 = 0 ⇒ 𝑞∗ = 0 and𝜆 = 𝐾 −
 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 > 0. Then, 𝑞 ≥ 0is strongly active. If the nonnegativity constraint is relaxed, 

there exists global minimum𝑞 < 0 by the concavity of 𝜋 𝑞  and KKT. 
 
Proof of Proposition 6.  

max𝑞 𝜋 𝑞 = 𝑞 𝑆2 − 𝑠1𝐿  𝑝
∗ − 𝑝 − 𝑐1 𝑝𝑒

𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝 𝑒−𝑐2𝑞𝑝
∗ 𝑆2−𝑠1𝐿    subject to 𝑞 ≥

0. KKT conditions are (i)𝜆 ≥ 0, (ii)𝜆𝑞∗ = 0and (iii) 

 𝑆2 − 𝑠1𝐿  𝑝
∗ − 𝑝 − 𝑐1𝑐2 𝑝 1 − 𝑝∗ 𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝 𝑝∗𝑒−𝑐2𝑞𝑝

∗ 𝑆2−𝑠1𝐿    + 𝜆 = 0 ⇒ 𝑞∗ ≥ 0 

and𝜆 = 0. Then, 𝑞 ≥ 0is weakly active. Since 𝜋 𝑞  and 𝑞 ≥ 0 are concave, 𝑞∗ ≥ 0 is the global 

optimum by KKT. Hence, the first order condition gives the global maximum. 
 
Proof of Proposition 7. (1) 𝜕𝑞∗/𝜕𝑐1 < 0: 

𝜕𝑞∗

𝜕𝑐1
= −

−𝑐2 𝑝 1 − 𝑝∗ 𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝 𝑝∗𝑒−𝑐2𝑞𝑝
∗ 𝑆2−𝑠1𝐿   

−𝑐1𝑐2
2 𝑆2 − 𝑠1𝐿  𝑝 1 − 𝑝∗ 2𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝  𝑝∗ 2𝑒−𝑐2𝑞𝑝

∗ 𝑆2−𝑠1𝐿   
. 

Let 

𝛼8 = 𝑐1𝑐2
2 𝑆2 − 𝑠1𝐿  𝑝 1 − 𝑝∗ 2𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝  𝑝∗ 2𝑒−𝑐2𝑞𝑝

∗ 𝑆2−𝑠1𝐿   > 0 
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𝛼9 = 𝑝 1 − 𝑝∗ 𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝 𝑝∗𝑒−𝑐2𝑞𝑝
∗ 𝑆2−𝑠1𝐿  =

𝜕𝐸𝑄 𝐶 𝑃 .    

𝜕𝑞

1

𝑐1𝑐2 𝑆2 − 𝑠1𝐿 
. 

Since 𝐸𝑄 𝐶 𝑃 .     is strictly increasing in q, 𝛼9 > 0. 

𝜕𝑞∗

𝜕𝑐1
= −

𝛼8

𝛼9
< 0. 

(2) 𝜕𝑞∗/𝜕𝑐2 < 0: 

Let 𝛼10 = 𝑝 1 − 𝑝∗ 2𝑞𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝  𝑝∗ 2𝑞𝑒−𝑐2𝑞𝑝
∗ 𝑆2−𝑠1𝐿  > 0, then 

𝜕𝑞∗

𝜕𝑐2
= −

−𝑐1 𝛼9 + 𝑐2 𝑆2 − 𝑠1𝐿 𝛼10 

−𝛼8
< 0. 

(3) 𝜕𝑞∗/𝜕𝑝 < 0: 

𝜕𝑞∗

𝜕𝑝
= −

−1 − 𝑐1𝑐2  1 − 𝑝∗ 𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  + 𝑝∗𝑒−𝑐2𝑞𝑝
∗ 𝑆2−𝑠1𝐿   

−𝑐1𝑐2
2 𝑆2 − 𝑠1𝐿 𝛼10

. 

Let 𝛼11 =  1 − 𝑝∗ 𝑒𝑐2𝑞 1−𝑝∗  𝑆2−𝑠1𝐿  + 𝑝∗𝑒−𝑐2𝑞𝑝
∗ 𝑆2−𝑠1𝐿  > 0, then 

𝜕𝑞∗

𝜕𝑝
= −

−1 − 𝑐1𝑐2𝛼11

−𝑐1𝑐2
2 𝑆2 − 𝑠1𝐿 𝛼10

< 0. 

(4) 𝜕𝑞∗/𝜕𝑆2 < 0: 
𝜕𝑞∗

𝜕𝑆2
= −

𝑞

 𝑆2 − 𝑠1𝐿 
< 0. 

(5) 𝜕𝑞∗/𝜕𝑠1 > 0: 

Let 𝛽6 = 𝑝 1 − 𝑝∗ 2𝑒𝑐2𝑞 1−𝑝∗  𝑆2−ln 𝑠1−ln 𝑑 +  1 − 𝑝  𝑝∗ 2𝑒−𝑐2𝑞𝑝
∗ 𝑆2−ln 𝑠1−ln 𝑑 , then 

𝜕𝑞∗

𝜕 ln 𝑠1
= −

−𝑐1𝑐2
2𝑞𝛽6

−𝑠1𝑐1𝑐2
2 𝑆2 − ln 𝑠1 − ln 𝑑  −𝛽6 

=
𝑞

𝑠1 𝑆2 − ln 𝑠1 − ln 𝑑 
> 0 

𝜕𝑞∗

𝜕𝑠1
=

𝜕𝑞∗

𝜕 ln 𝑠1

1

𝑠1
> 0. 

(6) 𝜕𝑞∗/𝜕𝜎 < 0. 

Let 𝛼12, 𝛼13 and 𝛼14 are the following: 

𝛼12 = 𝑝𝑒
𝑢

𝑢+1
𝑐2𝑞 𝑆2−ln 𝑠1+ln 𝑢  1 +

𝑢𝑞 𝑆2 − ln 𝑠1 + ln 𝑢 + 𝑢 + 1 

𝑢 + 1
 > 0, 

𝛼13 =  1 − 𝑝 𝑒
−1

𝑢+1
𝑐2𝑞 𝑆2−ln 𝑠1+ln 𝑢  1 + 𝑞

 𝑢 + 𝑢 ln 𝑢 + 1 

𝑢 𝑢 + 1 
 > 0, 

𝛼14 = 𝑝
𝑢2

 𝑢 + 1 2
𝑒

𝑢

𝑢+1
𝑐2𝑞 𝑆2−ln 𝑠1+ln 𝑢 +

 1 + 𝑝 

 𝑢 + 1 2
𝑒

−1

𝑢+1
𝑐2𝑞 𝑆2−ln 𝑠1+ln 𝑢 > 0. 

Then,  

𝜕𝑞∗

𝜕𝑢
= −

−
1

 𝑢+1 2
 1 + 𝑐1𝑐2

2 𝛼12 + 𝛼13  

−𝑐1𝑐2
2 𝑆2 − ln 𝑠1 + ln𝑢 𝛼14

< 0. 

By substituting 𝑢 = 𝑒𝜎𝛥𝑡  and the chain rule: 
𝜕𝑞∗

𝜕𝜎
=

𝜕𝑞∗

𝜕𝑢
𝛥𝑡𝑒𝜎𝛥𝑡 < 0. 

 

Proof of Proposition 8. First, 𝐸 𝑃 𝑞, 𝑠1  , 𝐸 𝑃
2 𝑞, 𝑠1  and 𝑉𝑎𝑟 𝑃 𝑞, 𝑠1   are the following: 

𝐸 𝑃 𝑞, 𝑠1  = 𝑞 𝑆2 − 𝑠1𝐿  𝑝
∗ − 𝑝 , 

𝐸 𝑃2 𝑞, 𝑠1  = 𝑞2 𝑆2 − 𝑠1𝐿 
2 𝑝 1 − 𝑝∗ 2 +  1 − 𝑝  𝑝∗ 2 , 

𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  = 𝑞2 𝑆2 − 𝑠1𝐿 
2𝑝 1 − 𝑝 . 

(i) 𝜕𝑞/𝜕𝑆2 < 0, 𝜕𝐸 𝑃 𝑞, 𝑠1  /𝜕𝑆2 > 0 and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /𝜕𝑆2 > 0: 
𝜕𝑞

𝜕𝑆2
= −

𝑞

𝑆2 − 𝑠1𝐿
< 0, 
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𝜕𝐸 𝑃 𝑞, 𝑠1  

𝜕𝑆2
= 𝑞 𝑝∗ − 𝑝 > 0, 

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝑆2
= 2𝑞2 𝑆2 − 𝑠1𝐿 𝑝 1 − 𝑝 > 0. 

(ii) 𝜕𝑞/𝜕𝑠1 > 0, 𝜕𝐸 𝑃 𝑞, 𝑠1  /𝜕𝑠1 < 0 and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /𝜕𝑠1 < 0: 
𝜕𝑞

𝜕 ln 𝑠1
=

𝑞

𝑠1 𝑆2 − ln 𝑠1 − ln𝑑 
> 0 ⇒

𝜕𝑞

𝜕𝑠1

1

𝑠1
> 0, 

𝜕𝐸 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑠1
= −𝑞 𝑝∗ − 𝑝 < 0, 

𝜕𝐸 𝑃 𝑞, 𝑠1  

𝜕𝑠1
=

𝜕𝐸 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑠1

1

𝑠1
< 0, 

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑠1
= −2𝑞2 𝑆2 − 𝑠1𝐿 𝑝 1 − 𝑝 < 0, 

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝑠1
=

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕 ln 𝑠1

1

𝑠1
< 0. 

(iii) 𝜕𝑞/𝜕𝜎 > 0, 𝜕𝐸 𝑃 𝑞, 𝑠1  /𝜕𝜎 > 0 and 𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  /𝜕𝜎 > 0: 

𝜕𝑞

𝜕𝑢
= −

−
𝑢

𝑢+1
𝑞 1 + 𝑐1𝑐2

2 𝛼12 + 𝛼13  

−𝑐1𝑐2
2 𝑆2 − ln 𝑠1 + ln𝑢 𝛼14

< 0. 

By substituting 𝑢 = 𝑒𝜎𝛥𝑡  and the chain rule: 
𝜕𝑞

𝜕𝜎
=

𝜕𝑞

𝜕𝑢
𝛥𝑡𝑒𝜎𝛥𝑡 < 0. 

Then, 
𝜕𝐸 𝑃 𝑞, 𝑠1  

𝜕𝑢
= 𝑞 𝑝∗ − 𝑝 

1

𝑢
> 0, 

𝜕𝐸 𝑃 𝑞, 𝑠1  

𝜕𝜎
=

𝜕𝐸 𝑃 𝑞, 𝑠1  

𝜕𝑢
𝛥𝑡𝑒𝜎𝛥𝑡 > 0, 

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝑢
= 2𝑞2 𝑆2 − 𝑠1𝐿 𝑝 1 − 𝑝 

1

𝑢
> 0, 

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝜎
=

𝜕𝑉𝑎𝑟 𝑃 𝑞, 𝑠1  

𝜕𝑢
𝛥𝑡𝑒𝜎𝛥𝑡 > 0. 

 
Proof of Proposition 9.  

min
𝑞

𝑐1 𝑝
∗𝑒𝑐2𝑞𝐾 +  1 − 𝑝∗ 𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑞 ≥ 0. 

KKT conditions are (i)𝜆 ≥ 0, (ii)𝜆𝑞∗ = 0and (iii) 

𝑐1𝑐2 𝑝
∗𝐾𝑒𝑐2𝑞𝐾 −  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾 𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  − 𝜆 = 0 ⇒ 𝑞∗ > 0 and𝜆 = 0. Then, 𝑞 ≥ 0is 

weakly active. Since 𝐸 𝐶 𝑃 𝑞, 𝑠1    and 𝑞 ≥ 0 are convex, 𝑞∗ > 0 is the global optimum by KKT. 

Hence, the first order condition gives the global minimum. 
 
Proof of Proposition 10.  
(i) 𝜕𝑞 𝜕𝑐2 < 0 

𝜕𝑞

𝜕𝑐2
= −

1

𝑐2
2 𝑆2 − 𝑠1𝐿 

ln  
 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 

𝑝∗𝐾
  

Since 𝐾 <  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 , 

ln  
 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 

𝑝∗𝐾
 > 0 

By assuming 𝑆2 > 𝑠1𝐿 , then  𝑆2 − 𝑠1𝐿 > 0. Therefore, 𝜕𝑞 𝜕𝑐2 < 0. 
(ii) 𝜕𝑞 𝜕𝐾 < 0 
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𝜕𝑞

𝜕𝐾
= −

1

𝑐2
2 𝑆2 − 𝑠1𝐿 

 
1

𝑆2 − 𝑠1𝐿 −𝐾
+

1

𝐾
  

Since  𝑆2 − 𝑠1𝐿 > 0 and 
1

𝑆2−𝑠1𝐿−𝐾
+

1

𝐾
> 0, then 𝜕𝑞 𝜕𝐾 < 0.  

(iii) 𝜕𝑞 𝜕𝜎 < 0 
Let 𝛼15, 𝛼16, 𝛼17, 𝛼18 and 𝛼19: 

𝛼15 =  𝑢 + 1 − 𝑢 𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾   𝑆2 − ln 𝑠1 + ln𝑢  

𝛼16 =  𝑢 + 1  𝑆2 − ln 𝑠1 + ln𝑢 − 𝐾 ln  
 𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾 

 𝑢 + 1 𝐾
  

𝛼17 = 𝑐2 𝑆2 − ln 𝑠1 + ln 𝑢 2 𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾 𝑢 𝑢 + 1 > 0 

𝛼18 =  𝑢 + 1  𝑆2 − ln 𝑠1 + ln 𝑢  1 − ln  
 𝑆2 − ln 𝑠1 + ln𝑢 − 𝐾 

 𝑢 + 1 𝐾
  < 0 

𝛼19 = 𝐾 𝑢 + 1 ln  
 𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾 

 𝑢 + 1 𝐾
 − 𝑢 𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾  𝑆2 − ln 𝑠1 + ln 𝑢  

By the definition of the natural logarithm: 

𝑆2 − ln 𝑠1 + ln 𝑢 − 𝐾 > ln 𝑆2 − ln 𝑠1 + ln𝑢 − 𝐾 . 
By definition, 𝐾 < 𝑢 𝑆2 − ln 𝑠1 + ln 𝑢  𝑢 + 1  , then 

𝑢 𝑆2 − ln 𝑠1 + ln 𝑢 > 𝐾 𝑢 + 1 . 
Therefore, 𝛼19 < 0. Then, 𝜕𝑞 𝜕𝑢 =  𝛼15 − 𝛼16 𝛼17 =  𝛼18 + 𝛼19 𝛼17 < 0. 
By substituting 𝑢 = 𝑒𝜎𝛥𝑡  and the chain rule: 

𝜕𝑞

𝜕𝜎
=

𝜕𝑞

𝜕𝑢
𝛥𝑡𝑒𝜎𝛥𝑡 < 0. 

(iv) 

𝜕𝑞 𝜕𝑆2 > 0 , 𝑠1𝐿 +
𝐾

1−𝑝∗ < 𝑆2 < 𝑆2
 

𝜕𝑞 𝜕𝑆2 = 0 , 𝑆2 = 𝑆2
 

𝜕𝑞 𝜕𝑆2 < 0 , 𝑆2
 < 𝑆2 < 𝑠1𝐻

 

𝜕𝑞

𝜕𝑆2
=

𝑆2 − 𝑠1𝐿 −  𝑆2 − 𝑠1𝐿 −𝐾 ln  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾 / 𝑝∗𝐾  

𝑐2 𝑆2 − 𝑠1𝐿 
2 𝑆2 − 𝑠1𝐿 −𝐾 

. 

By definition, 𝑐2 𝑆2 − 𝑠1𝐿 
2 𝑆2 − 𝑠1𝐿 − 𝐾 > 0. 

⇒ 𝑆2 − 𝑠1𝐿 −  𝑆2 − 𝑠1𝐿 −𝐾  ln  1 − 𝑝∗  𝑆2 − 𝑠1𝐿 −𝐾  / 𝑝∗𝐾   = 0, where 𝐾  is the critical capacity 

price at 𝜕𝑞 𝜕𝑆2 = 0. Then, by using simple algebra: 

1 − 𝑝∗

𝑒𝑝∗
=

𝐾 

𝑆2 − 𝑠1𝐿 −𝐾 
𝑒

𝐾 

𝑆2−𝑠1𝐿−𝐾  

Thus, in this equation system the Lambert-W function is used to find 𝐾 : 

𝐾 =  𝑆2 − 𝑠1𝐿 
𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊 

1−𝑝∗

𝑒𝑝∗
 

1 + 𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊 
1−𝑝∗

𝑒𝑝∗
 
 

Then, the critical mispricing ration, 𝜓 , is the following: 

𝜓 =
𝐾 

 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 
=

1

 1 − 𝑝∗ 

𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊 
1−𝑝∗

𝑒𝑝∗
 

1 + 𝐿𝑎𝑚𝑏𝑒𝑟𝑡𝑊 
1−𝑝∗

𝑒𝑝∗
 
 

Thus, 

𝜕𝑞 𝜕𝑆2 < 0 , 0 < 𝜓 < 𝜓 

𝜕𝑞 𝜕𝑆2 = 0 ,𝜓 = 𝜓 

𝜕𝑞 𝜕𝑆2 > 0 ,𝜓 < 𝜓 < 1

 

By substituting 𝜓 = 𝐾  1 − 𝑝∗  𝑆2 − 𝑠1𝐿  , 

𝑆2
 = 𝑠1𝐿 +

𝐾

𝜓  1 − 𝑝∗ 
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Therefore, by using 𝑆2
 : 

𝜕𝑞 𝜕𝑆2 > 0 , 𝑠1𝐿 +
𝐾

1 − 𝑝∗
< 𝑆2 < 𝑆2

 

𝜕𝑞 𝜕𝑆2 = 0 , 𝑆2 = 𝑆2
 

𝜕𝑞 𝜕𝑆2 < 0 , 𝑆2
 < 𝑆2 < 𝑠1𝐻

 

(v) 

𝜕𝑞 𝜕𝑠1 > 0 , 𝑠1𝐿 < 𝑠1 < 𝑠1 

𝜕𝑞 𝜕𝑠1 = 0 , 𝑠1 = 𝑠1 

𝜕𝑞 𝜕𝑠1 < 0 , 𝑠1 < 𝑠1 <
1

𝑑
𝑒
𝑆2−

𝐾

 1−𝑝∗ 

 

𝜕𝑞

𝜕 ln 𝑠1
= −

𝜕𝑞

𝜕𝑆2
⇒

𝜕𝑞

𝜕𝑠1
=

𝜕𝑞

𝜕 ln 𝑠1

1

𝑠1
= −

𝜕𝑞

𝜕𝑆2

1

𝑠1
 

Thus, 

𝜕𝑞 𝜕𝑠1 > 0 , 0 < 𝜓 < 𝜓 

𝜕𝑞 𝜕𝑠1 = 0 ,𝜓 = 𝜓 

𝜕𝑞 𝜕𝑠1 < 0 , 𝜓 < 𝜓 < 1

 

Since, similar to 𝑆2
 , 

𝑠1 =
1

𝑑
𝑒
𝑆2−

𝐾

𝜓  1−𝑝∗  

By substituting 𝑠1 : 
𝜕𝑞 𝜕𝑠1 > 0 , 𝑠1𝐿 < 𝑠1 < 𝑠1 

𝜕𝑞 𝜕𝑠1 = 0 , 𝑠1 = 𝑠1 

𝜕𝑞 𝜕𝑠1 < 0 , 𝑠1 < 𝑠1 <
1

𝑑
𝑒
𝑆2−

𝐾

 1−𝑝∗ 

 

 
Proof of Proposition 11. From Proposition 6, the first order condition gives the closed form 
solution for q*: 

𝑞∗ =
1

𝑐2 𝑆2 − 𝑠1𝐿 
ln  

 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 

𝑝∗𝐾
 . 

Since 𝐾 > 𝑆2 − 𝑠1𝐿 . 

ln  
 1 − 𝑝∗  𝑆2 − 𝑠1𝐿 − 𝐾 

𝑝∗𝐾
 < ln 1 < 0. 

Therefore, q* < 0. By the nonnegativity constraint on the capacity, q*=0. 
 
Proof of Proposition 12.  

min
𝑞

𝑐1 𝑝𝑒
𝑐2𝑞𝐾 +  1 − 𝑝 𝑒−𝑐2𝑞 𝑆2−𝑠1𝐿−𝐾  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑞 ≥ 0. 

The KKT conditions are (i)𝜆 ≥ 0, (ii)𝜆𝑞∗ = 0and (iii) 𝑐1𝑐2 𝑆2 − 𝑠1𝐿  𝑝 1 − 𝑝∗ 𝑒𝑐2𝑞
∗ 1−𝑝∗  𝑆2−𝑠1𝐿  +

 1 − 𝑝 𝑝∗𝑒−𝑐2𝑝
∗𝑞∗ 𝑆2−𝑠1𝐿   − 𝜆 = 0 ⇒ 𝑞∗ > 0 and𝜆 = 0. Then, 𝑞 ≥ 0is weakly active. Since 

𝐸 𝐶 𝑃 𝑞, 𝑠1    and 𝑞 ≥ 0 are convex, 𝑞∗ > 0 is the global optimum by KKT. Hence, the first 

order condition gives the global minimum: 

𝑐1𝑐2 𝑆2 − 𝑠1𝐿  𝑝 1 − 𝑝∗ 𝑒𝑐2𝑞
∗ 1−𝑝∗  𝑆2−𝑠1𝐿  +  1 − 𝑝 𝑝∗𝑒−𝑐2𝑝

∗𝑞∗ 𝑆2−𝑠1𝐿   = 0 

By simple algebra, q*: 

𝑞∗ =
1

𝑐2 𝑆2 − 𝑠1𝐿 
ln  

 1 − 𝑝 𝑝∗

𝑝 1 − 𝑝∗ 
 =

1

𝑐2 𝑆2 − 𝑠1𝐿 
ln  

𝐿∗

𝐿
  


