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Abstract 
 

Applications of statistical techniques are common in scientific and multidisciplinary research. 

Statistical tools are useful to describe the numerical facts as well as relationship between the 

factors and to test the independence of attributes or variables. Some researchers use statistics 

to explain the findings of a phenomenon. However some other researchers use statistical tools 

without understanding of the statistical technicality. Statistical errors are very common in 

scientific research and 50 percent of the published articles have at least some error. These 

errors are mainly about the important assumption of normality. The concept of normality and 

data transformation are the most important part when using statistical techniques. The 

assumption of normality is required for most of the statistical tools, namely correlation, 

regression and parametric test because their validity is based on normality. Data 

transformations are commonly used tools that can serve many functions in quantitative data 

analysis. The main purpose of this paper is to highlight the basic and important assumption 

based on normal distribution in terms normality test. The paper describes the concept of 

normality and how to test the normality of data. In this paper also describes the tools for 

normality in terms of standardized data transformation. 
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INTRODUCTION 

Applied statistical methods are commonly used in multidisciplinary research. Some of the 

researchers use statistical tools without understanding their pre- requisites. Statistical errors are 

very common in scientific research and at least one error in the 50% of research article 

(Ghasemi and Zahedisal, 2012). Many of the statistical methods including correlation, 

regression, analysis of variance and parametric tests are based on normal distribution. In other 

words testing of normality is required for most of the statistical procedures. In the context of 

correlation, regression and parametric test based on the normal distribution under the 

assumption that the population from which the samples are taken is normally distributed (Altman 

and Bland, 1995; Driscoll et al. 2000). Assumptions on statistical tools and important 

assumption about the normality should be taken seriously; otherwise it is difficult to draw the 

accurate and reliable conclusion about the reality (Royston, 1991; Oztuna et al. 2006). 

    

BASICS OF NORMAL DISTRIBUTION 

In the theory of probability, the normal distribution is commonly used for continuous probability 

distribution functions. Normal distributions are also important in statistics and social sciences for 

real-valued random variables whose distributions are not known (Casella and Berger, 2002; 

Driscoll et al., 2000). 

Normal distribution is useful because of the central limit theorem, which states that, 

under mild conditions, the mean of many random variables independently drawn from the same 

distribution is distributed approximately normal, irrespective of the form of the original 

distribution.  Physical quantities are expected to be the sum of many independent processes 

and a distribution very close to the normal. Moreover, many results and methods can be derived 

analytically in explicit form when the relevant variables are normally distributed. 

 

A normal distribution is f (x, µ, σ) = 1/σ√2π Exp[-(x-µ)2/2σ2]  

 

The parameter μ in this definition is the mean. The parameter σ is its standard deviation  

(variance =σ2). A random variable with a normal distribution is said to be normally distributed 

and is known as  a normal deviate. 

If μ = 0 and σ = 1, the distribution is called the standard normal distribution and a 

random variable with that distribution is a standard normal deviate. 

The assumption of normality is just the supposition that the underlying random variable 

of interest is distributed normally. Intuitively, normality may be understood as the result of the 

sum of a large number of independent random events. 

 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Social_science
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Variance
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Properties of Normal Distribution 

The first important and known property of the normal distribution indicates that given random 

and independent samples of N observations each; the distribution of sample means is normal 

and unbiased, regardless of the size of N (Shorack and Wellner, 1986; Cover and Thomas, 

2006). 

Second important property of the normal distribution is given random and independent 

observations, the sample mean and sample variance are independent. In other words, when 

collects a sample and use it to estimate both the mean and the variance of the population, the 

amount by which you might be wrong about the mean is a completely separate issue from how 

wrong you might be about the variance. As it turns out, the normal distribution is the only 

distribution for which this is true. 

 

Normality assumption 

Applications of the parametric method to inferential statistics, the values that are assumed to be 

normally distributed are the means across samples. Assumption of normality underlies 

parametric statistics and does not assert that the observations within a given sample are 

normally distributed, nor does it assert that the values within the population are normal. This 

core element of the assumption of normality asserts that the distribution of sample means is 

normal. Technically, the assumption of normality asserts that the sampling distribution of the 

mean is normal (Shorack and Wellner, 1986; Cover and Thomas, 2006). 

 

Challenges of Normality in Research 

Normality can be a problem when the sample size is small. Skewed data are problematic. 

Presence of kurtosis in data is also problematic, but not as much as skewness. Normality is a 

serious problem when there is activity in the tails of data set. Outliers are also problems of data 

in the tails are worse. 

 

NORMALITY TESTS 

Normality tests assess the likelihood that the given data set {x1, …,xn} comes from a normal 

distribution.  

Null Hypothesis (H0): The sample data are not significantly different from a normal 

population. 

Alternative Hypothesis (H1): The sample data are significantly different from a normal 

population. 

In other words, the null hypothesis H0 is that the observations are distributed normally with 

unspecified mean μ and variance σ2, versus the alternative H1 that the distribution is arbitrary. 

http://en.wikipedia.org/wiki/Null_hypothesis
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There are several methods for assessing the normality of data. It means that the observed data 

are normally distributed or not. This involves two broad categories. First technique is graphical 

test and the second is statistical test. 

 

Graphical test 

Generally in the graphical test normality compares a histogram of the sample data to a normal 

probability curve. The empirical distribution of the data (means histogram) should be bell-

shaped and resemble the normal distribution. It is difficult to see if the sample is small. Lack of 

fit to the regression line suggests a departure from normality. 

 

Quantile-Quantile (Q-Q) Plot Test 

Q-Q plot is a plot of the sorted values from the data set against the expected values of the 

corresponding quantiles from the standard normal distribution (Shapiro, 1980; Corder and 

Foreman, 2009). 

In this test, correlation between the sample data and normal quantiles (to measure the 

goodness of fit) measures how well the data is modeled by a normal distribution. For normal 

data the points plotted in the Q-Q plot should fall approximately on a straight line, indicating high 

positive correlation. These plots are easy to interpret and also have the benefit that outliers are 

easily identified. 

 

Cumulative Frequency (P-P) plot test: 

P-P plot is similar to the Q-Q plot, but used much less frequently. This method consists of 

plotting the points (Shapiro, 1980; Corder and Foreman, 2009).   

 

Statistical Test  

Statistical test are classified in different ways. 

Back-of-the-envelope test 

This test is useful in cases where one faces kurtosis risk and where large deviations matter and 

has the benefits that it is very easy to compute and to communicate: non-statisticians can easily 

grasp that "6σ events don’t happen in normal distributions". 

Simple back-of-the-envelope test takes the sample maximum and minimum and 

computes their z-score, or more properly t-statistic (number of sample standard deviations that 

a sample is above or below the sample mean), and compares it according to rule. 

 

 

 

http://en.wikipedia.org/wiki/Kurtosis_risk
http://en.wikipedia.org/wiki/Back-of-the-envelope
http://en.wikipedia.org/wiki/Z-score
http://en.wikipedia.org/wiki/T-statistic
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W/S Normality Test 

This test is based on t distribution and on q statistic. This test requires only standard deviation 

and the range of the data (Shapiro, 1980; Eadie,et al. 1971). 

q =  w/s 

Where q is statistic, s is the standard deviation and w is the range of data. W/S test uses a 

critical range. If the calculated value falls within the range, then accept the null hypothesis. If the 

calculated value is outside the range then reject the null hypothesis. 

 

The application of the test is based on purely hypothetical data in Table-1 

 

Table 1 Hypothetical Data 

S.No.     Student’s Height (cm.) 

01     141.2 

02     144.7 

03     145.5 

04     144.8 

05     145.1 

06     147.5 

07     148.1 

08     145.0 

09     144.9 

10     145.1 

11     145.1 

12     147.1 

13     144.4 

14     146.1 

15     147.4 

16     146.3 

17     147.2 

Mean= 145.6294 

Standard Deviation (s) is = 1.626639 

Range (w) of the data = 6.9 

Null Hypothesis (H0): The sample data are not significantly different than a normal population. 

Alternative Hypothesis (H1): The sample data are significantly different than a normal 

population. 

Q = w/s = 6.9/1.626639 = 4.24 

In this case critical range at 5% level of significance and n=17 lower limit is 3.06 and upper limit 

is 4.31. Calculated value of q is within the range, therefore null hypothesis is accepted.  
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Jarque–Bera test (Shapiro, 1980; Stuart et al., 1999) 

This test is based on chi square means goodness of fit. Jarque -Bera test is based on skewness 

(Sk) and kurtosis (Ku). The value of Jarque-Bera test (JB) is compared to the critical value of 

Chi-Square (χ2) with 2 degree of freedom. 

Sk={∑ (yi – ӯ)3} / n . s3 ; i=1,2,…..,n 

Ku = { ∑ (yi – ӯ)4} / n . s4 ; i=1,2,…..,n 

Where y is the each observation is the standard deviation and n is the sample size. 

JB= n[(Sk)
2/6  + (Ku)

2/24] 

 

Application of the test is based on purely hypothetical data in Table-1. 

Null Hypothesis(H0): Height is not significantly different than normal. 

Alternative Hypothesis (H1): Height is significantly different than normal. 

In this case critical value of Chi –Square is 5.991 at 2 degree of freedom. 

Application on the same hypothetical data presented in the table. 

N= 17  Mean (ӯ) = 145.6294     

∑ (yi – ӯ) = 0.000  ; i=1,2,…..,17 

∑ (yi – ӯ)2 = 42.3353  ; i=1,2,…..,17    

∑ (yi – ӯ)3 = -56.4694  ; i=1,2,…..,17  

∑ (yi – ӯ)4 = 459.3839 ; i=1,2,…..,17  

Sk = { ∑ (yi – ӯ)3} / n . s3 = -0.7718 

Ku = { ∑ (yi – ӯ)4} / n . s4 = 0.8598 

JB= n[ (Sk)
2/6  + (Ku)

2/24] =2.2112 

In this case critical value of Chi –Square is 5.991 at 2 degree of freedom is greater than 

calculated value of JB test. Therefore, H0 is accepted and conclude that height is not 

significantly different than normal. 

 

D'Agostino's or D Normality test 

This is very powerful test based on D statistic. Statistic (D) is derived through sum of squared 

deviates of data (SS) and sample size. First the data are arranged in ascending or descending 

order (Stephens 1986). 

D = T/√[(n3 x SS)] 

T= ∑ [ i–{(n+1)/2}] yi 

Application on the same hypothetical data presented.  

Null Hypothesis(H0): Height is not significantly different than normal. 

Alternative Hypothesis (H1): Height is significantly different than normal. 

Level of Significance (α) =0.05 = (5%) 
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Critical value of D= 0.2587, 0.2860  

n= 17  Mean (ӯ) = 145.6294     (n+1)/2= 9 

SS= ∑ (yi – ӯ)2 = 42.3353  ; i=1,2,…..,17 

T=∑ (i-9)yi    ; i=1,2,…..,17 

T= (1-9)141.2+……….. +(17-9)148.1 

T= 120.2 

D = T/√[(n3 x SS)] = 120.2/ √[(17^3 x 42.3353)] = 0.2636 

Since 0.2587 < D=0.2636< 0.2860.  

Therefore, H0 is accepted and conclude that the heights of the students are not significantly 

different from normal.   

 

Misc. Tests 

Some other test for normality are defined as: 

 

Kolmogorov–Smirnov test 

Kolmogorov–Smirnov test statistic and its asymptotic distribution under the null hypothesis were 

published by Kolmogorov (1933), while a table of the distribution was published by Smirnov 

(1948). Recurrence relations for the distribution of the test statistic in finite samples are 

available. 

Under null hypothesis that the sample comes from the hypothesized distribution F(y), 

√n Dn  →sup│B F(t)│ if n → ∞  

in distribution, where B(t) is the Brownian bridge. 

If F is continuous then under the null hypothesis√n Dnconverges to the Kolmogorov distribution, 

which does not depend on F. This result may also be known as the Kolmogorov theorem. 

The goodness-of-fit test or the Kolmogorov–Smirnov test is constructed by using the critical 

values of the Kolmogorov distribution. The null hypothesis is rejected at level  α if 

 √n Dn> Kα  

WhereKα is found from 

 P(K ≤ Kα) = 1 - α 

The asymptotic power of this test is 1. 

 

Anderson–Darling Test 

The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a 

given probability distribution. In its basic form, the test assumes that there are no parameters to 

be estimated in the distribution being tested, in which case the test and its set of critical values 

is free from distribution. However, the test is most often used in contexts where a family of 
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distributions is being tested, in which case the parameters of that family need to be estimated 

and account must be taken of this in adjusting either the test-statistic or its critical values. When 

applied to testing if a normal distribution adequately describes a set of data, it is one of the most 

powerful statistical tools for detecting most departures from normality (D’Agostino et al., 1990; 

Anscombe, et al. 1983).K-sample Anderson–Darling tests are available for testing whether 

several collections of observations can be modeled as coming from a single population, where 

the distribution function does not have to be specified. 

In addition to its use as a test of fit for distributions, it can be used in parameter estimation as 

the basis for a form of minimum distance estimation procedure. 

 

Shapiro-Wilk test 

The Shapiro–Wilk test is a test of normality in frequent statistics. It was published by Shapiro 

and Wilk (1965). 

The Shapiro–Wilk test utilizes the null hypothesis principle to check whether a sample y1, ...,yn 

came from a normally distributed population. The test statistic is: 

 W = (∑ aiyi)
2 / ∑(yi – ӯ)2 ; i= 1, 2, ………,n 

where 

yi(with parentheses enclosing the subscript index i) is the ithorder statistic, i.e., the ith-smallest 

number in the sample 

ӯ = [∑ yi]/n 

the constants ai given by 

yi (with parentheses enclosing the subscript index i) is the ithorder statistic, i.e., the ith-smallest 

number in the sample, ӯis the sample mean and the constants ai are given by 

(a1, a2, ………..,an) = [mTV-1]/(mt V-1V-1m)1/2 

and m= (m1, m2, ………..,mn)
T 

Where, m1, m2, ………..,mn are the expected values of the order statistics of independent and 

identically distributed random variables sampled from the standard normal distribution, and V is 

the covariance matrix of those order statistics. The user may reject the null hypothesis if W is 

below a predetermined value. 

 

Omnibus K2 statistic 

Statistics Z1 and Z2 can be combined to produce an omnibus test, able to detect deviations from 

normality due to either skewness or kurtosis (D’Agostino, et al. 1990; Anscombe, 1983). 

K2 = Z1(g1)
2 + Z2(g2)

2 

If the null hypothesis of normality is true, then K2 is approximately χ2-distributed with 2 degrees 

of freedom. 

http://en.wikipedia.org/wiki/Order_statistic
http://en.wikipedia.org/wiki/Order_statistic
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Order_statistic
http://en.wikipedia.org/wiki/Covariance_matrix
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Note that the statistics g1, g2 are not independent, only uncorrelated. Therefore their transforms 

Z1, Z2 will be dependent (Shenton and Bowman, 1977). 

 

DATA TRANSFORMATION 

Data transformations are the application of a mathematical modification to the values of 

variable. There are different variety of possible data transformations ranging from adding 

constants to multiplying, squaring, converting to logarithmic scales, taking the square root of the 

values and even applying trigonometric transformations. In other words data transformation is 

the application of deterministic mathematical function to each point in a data set. Suppose each 

data point Xi is replaced with the transformed value Yi = f(Xi) where f is a function. 

Transformations are usually applied so that the observational data more closely meet the 

assumptions of statistical procedure. Finally, transformed data improves interpretability, even if 

formal statistical technique is to be used (Baker, 1934). 

 

Concept and Meaning of Transformation Approach (Bartlett, 1947)  

Y = α + β X   (1) 

It means that a unit increase in X is associated with an average of β units increase in Y. 

log (Y)= α + β X   (2) 

Taking exponential both sides of equation (2) 

Y= eα eβX 

It means that a unit increase in X is associated with an average of 100β% increase in Y 

Y= α + β log (X)  (3) 

It means that a 1% increase in X is associated with an average β/100 units increase in Y 

log(Y)= α + β log (X) (4) 

Taking exponential both side of the equation (4) 

Y = eα Xβ 

It means that 1% increase in X is associated with a β% increase in Y 

 

Transformations 

The square root and logarithmic transformations are generally used for positive data. The 

reciprocal or multiplicative inverse can be used for non- zero data. The power transformation is 

a group of transformations with parameter λ (non negative value) that includes square root, 

logarithmic and reciprocal transformation. It is possible to use statistical estimation procedure to 

estimate the parameter λ in the power transformation. In the group of power transformation also 

includes the identity transformation. This transformation approach can also indicate whether it 
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would be best to analyze the data without transformation. In the regression analysis approach, 

this technique is known as Box-Cox technique. 

 

Square Root Transformation 

Square root transformation is more common and popular data transformation. In this 

transformation, the square root of every observation is taken. However, as one cannot take the 

square root of a negative number, if there are negative values for a variable a constant must be 

added to move the minimum value of the distribution above 0, preferably to 1.00. Another 

important point is that numbers of 1.0 and above behave differently than numbers between 0.00 

and 0.99. The square root of numbers above 1.0 always become smaller, 1.00 and 0.00 remain 

constant, and numbers between 0.00 and 1.00 become larger. Thus, if apply a square root to a 

continuous variable that contains values between 0 and 1 as well as above 1, treating some 

numbers differently than others (Osborne, 2002).  

 

Logarithmic Transformation  

Logarithmic transformations are a class of transformations. In this transformation, logarithm is 

the power a base number must be raised to in order to get the original number. Any given 

number can be expressed as y to the x power in an infinite number of ways. It means that if 

considering base 10, 1 is 100, 100 is 102, 16 is 101.2, and so on. Thus log10(100)=2 and 

log10(16)=1.2 . Another common option is the natural logarithm, where the constant e (2.7183) is 

the base. In this case the natural log 100 is 4.605. Logarithm of any negative number or number 

less than 1 is unidentified, if a variable contains values less than 1.0 is constant must be added 

to move the minimum value of the distribution, preferably to 1.00 (Osborne, 2002).  

 

CONCLUSIONS 

Research investigation is the part of a wider development with regard to finance, education, 

public health, and agriculture, etc. that are indicators of better life of human beings. Modern 

applied research based on better living management is quite complex, requiring multiple sets of 

skills such as agricultural, medical, social, technological, mathematical, statistical etc. Suitable 

statistical tools and research designs provide the unbiased estimates of the indicators, 

conclusions, and their interpretations. The statistical tools are simple and applicable in various 

fields and also some software’s are available for calculations of the statistical test. On the other 

hand, assumptions and technicality behind the statistical tools and suitability of the tests are 

also more important. In this context, normality is one of the most important aspects for statistical 

analysis. Normality condition is essential especially for parametric test and regression analysis. 

These tests are suitable for testing of normality and appropriate data transformation. The 
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statistical tests for normality are also useful for small sample sizes. A careful consideration of 

normality and data transformation will hopefully result in more meaningful studies whose results 

and interpretations are based on sound scientific principles. 
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